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The neocortex is widely believed to be the seat of intelligence and “mind”. However,
it’s unclear what “mind” is, or how the special features of neocortex enable it,
though likely “connectionist” principles are involved *A. The key to intelligence1 is
learning relationships between large numbers of signals (such as pixel values),
rather than memorizing explicit patterns. Causes (such as objects) can then be
inferred from a learned internal model. These relationships fall into 2 classes:
simple pairwise or second-order correlations (socs), and complex, and vastly more
numerous, higher-order correlations (hocsB), such as the product of 3 or more pixels
averaged over a set of images. Thus if 3 pixels correlate, they may give an “edge”.
Neurons with “Hebbian” synapses (changing strength in response to input-output
spike-coincidences) are sensitive to such correlations, and it’s likely that learned
internal models use such neurons. Because output firing depends on input firing via
the relevant connection strengths, Hebbian learning provides, in a feedback
manner, sensitivity to input correlations. Hocs are vital, since they express
“interesting” structure2 (e.g. edges), but their detection requires nonlinear rules
operating at synapses of individual neurons. Here we report that in single model
neurons learning from hocs fails, and defaults to socs, if nonlinear Hebbian rules are
not sufficiently connection-specific. Such failure would inevitably occur if a
neuron’s input synapses were too crowded, and would undermine biological
connectionism. Since the cortex must be hoc-sensitive to achieve the type of learning
enabling mind, we propose it uses known, detailed but poorly understood circuitry
and physiology to “proofread” Hebbian connections. Analogous DNA proofreading
allows evolution of complex genomes (i.e. “life”).

This view, combining insights from synapse biophysics, molecular evolution, neocortical
anatomy and neural learning theory, seems as unpromising as the notion that life is the
outcome of amplified molecular accidents, to which it is closely linkedC. Recent data
suggest that Hebbian adjustments are highly3, but not completely4,5  specific, because of
excellent (~99%) confinement of calcium6,7 and its effects8 by spinesD. Since biological
processes are usually error-tolerant the observed specificity might suffice for learning
hocs, but this has never been tested, and there is a highly relevant case where
extraordinary accuracy is essential, DNA replication. Darwinian evolution, a type of
chemical complex learning from the world9, is only possible because error rates for base

*superscripted letters refer to Supplementary Notes; the Supplement also contains additional material.
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copying are comparable to reciprocal genome lengthsE,9,10. Accurate replication (per-base
error rates <10-9) is achieved by multiple mechanisms11 which evolved in a series of
information-enriching transitions12: relatively (~99%) selective base-pairing; selectivity
conferred by replicases; proofreading; mismatch repair. The largest contributor is
proofreading, reducing the error rate from < 10-3 to << 10-6, since 2 independent pairing
events must concur.

We proposedF,13,14,15 that key neocortical circuitry accomplishes a conceptually-identical
proofreading operation on 2 independent measures of spike-pairing, allowing large
improvements in Hebbian accuracy, and otherwise usually impossible feats of learning.
We now show that the required circuitry closely matches recent data16 and describe
computational results providing the crucial missing link: complex learning by a model
neuron typically collapses to simple learning, if Hebbian specificity falls below a
threshold comparable to that expected (and observed) from biophysics. This test requires
a model where learning (i.e. convergence to stable weights) depends on input correlations
generated in a defined manner, and on a nonlinear Hebb rule. Independent Component
Analysis (ICA)17,18 meets these requirements. This model learns implicit target weights
using the hocs in an ensemble of input patterns. We used the simplest possible
“crosstalk” modelG,19, corresponding to the usual genetic assumption of base- and
position-independent copying-accuracy, though we obtained similar results when
“hotspots”F were introduced. As in Darwinian evolution9,10,E, the threshold depends on
the learning taskH, but typically falls within a biophysically-plausible range, so if the
neocortex is to solve diverse problems, it must have wetware overcoming this limitation.

Complex learning power reflects the number of inputs whose hocs can be exploited by
Hebbian rules, and is therefore best done in individual neurons, rather than dendritic
segmentsI.  Our model is based on single-unit ICAJ,17,20, a minimal hoc-based abstraction
of object identification. Input vectors x (with pixel-like elements x,) generated by linearly
combining n independently-fluctuating unknown object–like “sources” using an
approximately orthogonalK square “mixing” matrix Mo are applied to the adjustable
weights w of a neuron whose output y (the inferred “object”) is the weighted input sum
xTw (Fig.1a). x and y are mean rates rather than detailed descriptions of firing times
which may be necessary to predict real neuron output, since this “connectionist” model
doesn’t respond to temporal sequencing. Timing would make it even more difficult for
real synapses to achieve high specificityL. The ith weight adjustment is made using the
nonlinear Hebbian rule  Δwi = +/- k xi f(y). k is a small learning constant, and f any
sufficiently smooth nonlinearity; we usually used the statistically robust17 tanh which for
typical superGaussian sources requires a negative sign (“antiHebb”) in the rule17,20. In
real neurons this multiplication could be implemented by spike coincidence detectionM.
Linear Hebb rules are only sensitive to pairwise correlations19,21; nonlinearity provides
additional sensitivity to hocsO. Hebbian rules produce weights that grow or shrink
without limit, and require stabilization: we divided the weight vector by its new length
after each adjustment20. Similar “normalization” could be achieved by a variety of
mechanisms and is “multiplicative”, confining the weight vector to a unit sphere22 (Fig.
1b).
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The 1-unit rule also requires that inputs be preprocessed, or “whitened”, to remove socs;
we found that partial whitening typically sufficedP. A random M was used to generate an
initial batch (typically 103) of mix vectors, for which a small-sample covariance matrix
Cs was calculatedP. Mo was formed using Mo = Cs 

-1/2M, so CL, the large-sample (105)
covariance matrix of the imperfectly decorrelated, “off-white”, mix vectors, is close to a
scaled identity matrix I (Fig. 1c), to an extent that depends on the small-sample size. In
practice perfect decorrelation cannot be achieved using reasonable samples, or with
biological crosstalk and finite kQ19. If the vector w converges to a row of Mo

-1, the output
tracks a source; to simplify model learning and its interpretation, in most cases all sources
but one were Gaussian so only one equilibrium, extracting the nonGaussian source, is
stableR,17,20,23 (Figs. 1b, 2a,b).

Figure 1  The ICA-with-crosstalk model: structure, behaviour, parameters

 a shows a model neuron (output y) receiving input from 3 mix signals x via adjustable connection weights
w. The mix signals are formed by combining 3 independently and symmetrically fluctuating sources s via a
set of fixed mixing coefficients (different size colored dots; open dots are negative), the elements of the
almost orthogonal matrix Mo. In practice ICA is done in 2 stages: initial linear PCA (“whitening”) followed
by nonlinear learning; these are combined in this figure by replacing M by Mo. The first column of Mo
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corresponds to the red coefficients, arising from the nonGaussian (typically Laplacian) source shown as a
solid circle (“L”). The other sources are Gaussian (dotted circles; “G”).

b diagrams schematically the 3 weights, zigzagging (solid: subthreshold crosstalk; dotted: suprathreshold)
under the influence of successive patterns, and confined by normalisation to the unit sphere. For low
crosstalk weights zigzag to the IC (red dot), above threshold to the approximate PC (solid  yellow line).
The 3D weight surface has been rotated so the direction of the red column of Mo points straight at the
reader, so the direction of the first row of Mo

 -1 (to which it is almost parallel) points almost to the reader
(short solid red line starting at the black dot origin and terminating on the sphere as a red dot). The other
directions of almost orthogonal rows of Mo

 -1 are also shown as blue and green dotted lines. The red dot is
the target weight vector that allows the neuron to track the nonGaussian source (the “IC”). The purple line
shows the least PC, and the yellow line the loci of the terminations of the least eigenvectors of EC on the
sphere (i.e. the stable weights obtained using purely Gaussian sources at various errors). Just suprathreshold
error triggers a movement (dotted zigzags) from the approximate IC to the square; further increase in error
moves the learned average weights along the solid yellow line; the dotted yellow line is not stable when
sources are nonGaussian.
c shows the mixing matrix Mo and its inverse, the unmixing matrix Mo

-1; the red row is the only stable IC
and corresponds roughly to the red coefficients in the first column of  Mo. Since Mo is only approximately
orthogonal, the covariance matrix CL of even a large (100,000) batch of x has offdiagonal elements very
small but nonzero, and slightly unequal diagonal elements. The error matrix E (which has equal diagonal
elements Q and equal offdiagonal elements (1-Q)/(n-1)) is shown with entries corresponding to the
threshold in Fig. 2. For further detail see Supplementary Legends.

We introduced crosstalk by modifying the rule to Δw = +/-kE x f(y), where E is a
symmetric “error matrix” assigning a fraction (1-Q) of an adjustment to the other
weights, dividing it up according to the offdiagonal elements of ES,T,19. Zero crosstalk,
assumed in standard models, implies Q (“quality”) = 1. Usually we set offdiagonal
elements of E, and also diagonal elements, to be equal (Fig. 1c), corresponding to the
standard connectionist assumption that all connections of a given type are equivalent, and
to spatiotemporal averaging of varying synaptic configurationsT,19.

In most tests the nonGaussian source had a Laplacian distributionU. With zero error the
rule converged to the weights corresponding to this source, the “IC” (Figs. 1, 2).  A low
level of error (“crosstalk”, expressed as a per-connection quantity that is independent of
nT,19) produces only slight degradation of learning, but, crucially, above a narrow
threshold range, weights snap from the IC to a new average directionV. If the nonlinear
rule fails to learn from hocs above a threshold, this new direction could correspond to
mere soc learning. We tested this using the same Mo but with all sources Gaussian, so the
mix vectors exhibit only socsW. Now the error-free nonlinear rule learned the least
eigenvector of CL, as expected for an antiHebbian ruleP. As crosstalk increased, the
learned vector gradually moved away from this direction, and above the nonGaussian
threshold the weights learned for either mixed Laplacian-Gaussian sources or pure
Gaussian sources were identical (Figs. 1b, 2a,b). Furthermore, the learned vector for
Gaussian sources tracked the expected theoretical curve19 (corresponding to the least
eigenvector of EC) for a linear rule (Fig. 2a), although the rule is nonlinear. Crucially,
minor crosstalk makes the nonlinear rule behave linearly, ignoring hocs. This was true for
different Ms (though the threshold varied; for 4 cases studied in detail the average
threshold was 0.04 +/- 0.03 (SD)), and for different source distributions or degrees of
whitening (being more error sensitive for lower kurtosis sources or less whiteningX).
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We are not proposing the brain does ICA, though it may do something similarY,24,25,26.
Instead our results suggest a principle: nonlinear Hebbian rules become insensitive to
hocs above a threshold crosstalk levelZ. A normalized nonlinear correctly-signed rule
automatically learns ICs if inputs are generated by square linear mixing. If inputs are
generated differently, for example by rectangular mixing, nondeterministically or
nonlinearly, a single neuron may not learn any stable weight vector27, but if it does,
enough crosstalk will cause failureAA.

Figure 2   Crosstalk causes hoc learning to collapse to soc learning in 1-unit ICA.

Calculations were done using the conditions in Fig. 1, with 3 inputs and weights, using f(y)= tanh(y),
explicit normalisation and antiHebb learning. The left hand plot shows two of the steady-state averaged
weights using 1 Laplacian source (red) or all Gaussian sources (blue; error bars show SD). At the threshold
per connection error b = 0.0425 the Laplacian weights snap to match the all-Gaussian weights. The per
connection error b is related to Q (Fig. 1) by b = (1-Q)/nQ, and expresses the expected dependence of
crosstalk on biophysical parameters19. The black lines show theoretical weights calculated from the least
eigenvectors of ECL

19; CL was estimated from a sample of 100,000 input vectors. The right hand plots show
the cosine of the angle between the Laplacian and Gaussian weight vectors as a function of error (blue
line); at the critical error the Laplacian weight vector jumps to the Gaussian weight vector. The red line
show how the cosine of the angle between the weight vector and the first row of Mo

-1 (Laplacian source)
changes with error (again with sharp change at b = 0.0425). See Supplementary Legends for details. k =
0.002; similar results were obtained with k = 0.0002

Why does crosstalk prevent learning from hocsBB? A weight vector parallel to a row of
Mo is a stable equilibrium of an accurate averaged nonlinear rule17,20 but the rule may
have other equilibria. For a linear rule and any nonwhite input distribution the
eigenvectors of C (Principal Components; PCs) are equilibria, and the greatest (or for
antiHebb, least) is, typically, stable19,21,P; this should also be true for nonlinear rules with
Gaussian inputs. We confirmed that the leading or (for antiHebb rules, least) eigenvector
of C is stable for Gaussian inputs, even for a cubic nonlinearity with no linear term.
However for nonlinear rules, sufficiently nonGaussian inputs destabilize this PC, and
stabilize the IC17,20. Suprathreshold error apparently nulls the nonlinearity, destabilizing
the IC and restabilizing the approximate PC (least or largest eigenvector of EC), because
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error moves the equilibrium weights slightly away from the IC, eventually invalidating
the stability proof17,20. Further study should reveal what factors other than source kurtosis
and orthogonalityX of Mo (e.g. M, n and bit resolution) set the threshold and its
sharpness, and why. However, either these factors reflect the task specifics (and cannot
be circumvented) or unavoidable neural limitations.

These results suggest that individual neurons typically cannot learn connection weights
that reflect input hocs unless the necessarily nonlinear Hebbian rule is highly (~95%)
accurateT. Indeed, they underestimate the problem since they ignore additional effects of
crosstalk on biological prewhiteningT,19. Even if only ~1% of the calcium entering a spine
escapes to the shaft7 but there are 10 or more synapses within range of that calcium28,29,
such accuracy may be unobtainable19CC. Crowded synapses are inevitable if neurons learn
from many inputsW. Since neocortical neurons manifestly do learn from hocs, even
though their numerous inputs may obey more less favourable statistics than for ICA, the
neocortex must presumably use a non-synaptic (neuronal) strategy for increasing Hebbian
accuracy13,14,15. The root problem is coincidence-detection failure: because of
intracellular messenger diffusion from nearby synapses experiencing coincidences, a
connection may register a “false spike-pair”, analogous to incorrect base-pairing.  The
obvious way to overcome this uses an additional, independent measure of near-coincident
firing of input and output neurons contributing to the synapse; double mistakes should be
rare. We have suggested13,14,15 the neocortex might contain (in layer 6) dedicated
“Hebbian neurons” detecting coincidences across connections, using branches of the
relevant axons, and supplying these independently detected coincidences in near real-
time (<100 msecDD), to the relevant (probably thalamocortical) connections, so if the
“second” (neuronal) coincidence confirms a “first” (synaptic) coincidence, the relevant
weight is allowed to change. Fig. 3a diagrams the necessary wetware. Selective
confirmation delivery to the relevant connection could be achieved by applying it pre-
and postsynaptically (e.g. to a relay and its layer 4 target), requiring that both sides of the
connection receive it (Fig. 3a). This “proofreading” strategy would seem to need a
dedicated proofreading neuron for every anatomical feedforward connection (recurrent
connections may not need proofreading if they learn socs) even if comprised only of
silent synapses. However, since coincidences across connections are probably rare
(antiHebbian learning and NMDAR maturation tend to reduce them), a proofreading
neuron could monitor many connections in a distributed manner (Fig. 3b): while it could
wrongly enable strength changes at connections not experiencing genuine coincidences,
this would vanish in the sparse coincidence limit (much as interference in associative
memories vanishes for sparse patterns). The diagram in Fig. 3b (see also Supplement Fig.
1), which goes beyond our previous sketch15, matches known but mysterious “universal”
thalamocorticothalamic circuitry and physiology30 , and could form the backbone of the
cortical “column”. There is remarkably close agreement between these requirements for
distributed proofreading and recent counterintuitive data on the pattern of CT
feedback16,EE.
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Figure 3    Proposed thalamocortical circuitry for dedicated or distributed proofreading.

Fig. 3a  (Left) Dedicated Proofreading. An input J connects to a neuron I and also, via a weaker connection,
to a dedicated proofreading partner K. The K cell also receives weak input from the I cell. K feeds back to
both J and I via modulatory connections (red arrows). K fires when the J and I cells fire near-coincident
spikes and shifts the target J-I connection to “plasticity approved” mode by conjoint modulation of the
input and output sides.
3b.  (Right) Distributed “PushPull” Proofreading. The diagram makes the identification J = thalamic relay
(T), I = layer 4, K = layer 6 CT cell and shows one possible version of distributed proofreading, for
concreteness drawn for an orientation-tuned layer 4 simple cell (i.e. responding to a horizontal edge) ; only
off relays, which generate the green off-lobe of the layer 4 RF, are shown; the green, “overlapping’ and
“matching”16,  relays contribute to the off-lobe; the on-lobe is shown yellow, and the corresponding
“overlapping” but “nonmatching” ZZ off-relays are shown pink – these do not connect to the layer 4 or 6
cells shown). The layer 6 cell firing modulates its partner layer 4 cell directly to briefly enable
thalamocortical plasticity postynaptically. It also modulates the set of thalamic relays (green and blue
ovals) that innervate (by silent or nonsilent synapses) its partner layer 4 cell, via a TRN inhibitory cell
(omitted), which shifts relays to burst mode, briefly enabling thalamocortical plasticity presynaptically (red
arrows). Both pre- and post-enabling are required for the strength change triggered by T-4 spike-
coincidence to be expressed; such dual-enabling occurs if the 6–cell rapidly confirms the spike-coincidence
“seen” by the relevant thalamocortical synapses. Enablement should be executed before the typical arrival
of the next coincidence (~100 msec -10 sec). The dotted ovals correspond to “unavailable” relays that
cannot reach the dendrites of the illustrated layer 4 cell. This is a “functional” diagram; see Supplement for
an anatomical diagram showing the intervening TRN cell, which innervates all the nondotted relays.
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Currently unconnected “incipient” relays14 , including “nonmatching” relays (pink) and nonoverlapping,
open undotted relays , that could form synapses on the 4-cell receive direct depolarizing modulation
(reversed red arrows) which maintains them in tonic, plasticity-disabled, mode (unless they receive
enabling signals from other 6-cells monitoring the connections they do form, on other 4-cells). Some
“nonoverlapping” connected relays (e.g. blue oval), make only silent synapses (open blue dot) and
therefore do not contribute to the receptive field. These silent connections must be monitored and should
receive enabling input. The scheme closely fits recent results16,EE. See Supplement for details.

Our results also suggest a generalization of Eigen’s “error threshold”9,10 (setting the
maximum size of genomes) to other forms of learning: learned information depends on
the reciprocal of the learning error rate. This seems true for socsFF,19. For hocs, the
learned information at zero error, the product of the vector dimension (n) and the w bit
resolution, evaporates at the threshold. Thus the effect of error on soc and hoc learning is
quantitatively the same but qualitatively different, being gradual (and tolerable) for the
former and abrupt (and catastrophic) for the latterFF.

This explanation of the neocortical basis of sophisticated learning by individual neurons,
the key to intelligence and “mind”, is simple, and parallels that accepted as the key to
“life”GG. In intelligent brains neurons must learn from hocs; perfect Hebbian synapses
could accomplish this, but in practice crosstalk usually makes this impossible. A
“proofreading” mechanism, conceptually identical to that allowing the evolution of
complex genomes (“life”), would allow such learning and matches known, but enigmatic,
thalamocortical anatomy and physiology. Nevertheless, even with proofreading, cortical
neurons could probably only handle around 1000 inputs (as typically observed), since
otherwise synapses become so crowded that crosstalk would increase to the point where
hoc learning failsCC. This would vastly restrict the learning power of neurons and brains.
Evolution may provide useful analogies for understanding learning and intelligence.
Perhaps further major evolutionary transitions after DNA/protein12 provide useful clues
about mechanisms enabling human levels of mindHH,II.
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