
Hodgkin- Huxley.

Idealised Channel, which is open when a gating particle with charge ze is in
the open position.

y = fraction of open channels

dy/dt =  α(1−y) - βy =  α − (α+β)y   Eq 1

In the steady state y = y0 = α/(α+β)

We can rewrite Eq 1 as dy/dt = (y0-y)/τ.  Eq 2

Both Eqs 1 and 2 are equivalent, some authors use rate constants , some use
time constant and y0.

If we make a step change in either or both of the rate constants, as in a
voltage clamp experiment (H  & H assumed that V determines the rate
constants, in a manner to be discussed below), the temporal evolution of y is
given by the solution of eq 1 or eq 2:

y = y& -(y&-y0)exp-(α+β)t

(I have used & to represent the infinity sign. y& and y0 are just the fraction of
channels open at the end of the step and before the step.

The V-dependence of y& or y0  can be calculated using the Boltzmann
formula, since the energy increase of the gating particle moving from the
closed to open positions is zeδV where δ is the fraction of the membrane
potential through which the gating charge moves. The result is y& = 1/(1+
exp( C - zeδV/kT)) where C is the chemical energy difference between the
closed and open states. This is a sigmoidal function of V, with zδ governing
the steepness of the curve and C governing its position along the V axis.

Similarly, the V-dependence of the rate constants can be calculated
assuming that the barrier is half way between the closed and open positions.
The results are

α = α0 exp zeδV/2kT  and β = β0 exp - zeδV/2kT



where α0  β0 are the rate constants at V = 0. The factor 2 in the denominator
arises because the peak of the energy barrier is midway between the open
and closed positions of the gating charge .

From these equations it can be seen that τ will have a bell-shaped
dependence on V. Because we assumed a symmetrical barrier, the peak of
the bell will occur at the voltage corresponding to the midpoint of the
Boltzmann y0 sigmoid.

Real HH channels

To account for the sigmoidal conductance activation 4 identical independent
gating particles behaving as above were postulated, with all 4 required open
to open the channel. Thus Gk = Gk,max n4

where Gk,max is the maximum K-conductance, with all the K channels open.
For Na channels, to account for inactivation, an additional h gating particle
was postulated. This is in the open position at negative potentials. So GNa =
GNa,max  m3h

For the “space clamped” or isopotential condition, the current equation is

Istim = Il + INa + Ik + C dV/dT

with INa = GNa (V-ENa) etc. Il is the leak current.

For the propagating spike, the cable equation must be used, modified to
include active conductances:

d2V/dx2
 (1/ ra) =  Il +  INa + Ik + C dV/dT

Since the spike advances as a nondecrementing wave, one can replace x by θt
where θ is the (unknown) velocity. Although θ is unknown, it will be close to the
observed velocity, and in simulating the equations on a computer, one starts with
a “guessed” value of θ similar to the observed value. This will not be exactly
right for the H-H model, and because of this internal inconsistency, the
calculations will soon “blow up”, leading to infinities. Trial and error will yield



successively better values of θ, which should (if the HH equations provide a good
description of spike propagation) still be quite close to the experimental values.

In reality, H and H also slightly modified the above equations for the rate
constants to better fit the data.
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