PCA

We have seen that the hippocampus stores patterns of neural activity sent from the
neocortex (via the perforant path). What are these neocortical patterns of activity, and
how are they generated? One way to answer this question (which we will examine in a
later lecture) is to study the physiology and anatomy of the neocortex. This work suggests
that the neocortex sets up neural representations of events as they occur, and that these
representations facilitate complex computations, resulting in appropriate behavior.
However, before looking at the details, we will first explore the general idea that neurons
can set up useful representations.

We do not memorise scenes and events like a photograph or a movie. You know what
you had for breakfast this morning, but not because your brain took a photograph (which
is why we find cameras such useful adjuncts to our lives). You remember that you had
bacon and eggs, and perhaps the general look of the eggs on the plate, but not the value of
every pixel at every moment as you ate. Your brain represented the complex array of
ever-changing retinal pixels in terms of relatively changeless and simple concepts “eggs”,
“bacon”, “plate” etc (and perhaps even “easy-over” or “sunny-side up”). In other words,
you represented the myriad data points as objects, which, while unique, have
recognizable properties. An object, such as an egg or a plate, is essentially a stored
prototype, and the brain compares the incoming data (retinal pixels etc) to this prototype,
identifying the current collection of pixels as matching one prototype (egg) better than
others (plate or chair). The exact way this is done is complex and controversial, but a
good starting point for exploration is the statisitical technique known as Principal
Component Analysis.

A professor decides to offer a party for his students. Being a neurobiologist, he decides to
do things in style, and serve caviar and champagne. But, as a neurobiologist, he cannot
afford to provide a huge bow! of caviar for everyone, so he decides to offer each student a
portion appropriate to their metabolic requirements. He asks his TA to measure the height
and weight of each student, and plots them on a graph (after subtracting the average
height and weight). He obtains the following graph



He observes that height and weight (at least for his class) are not unrelated, but
correlated, or clustered in the 2 dimensional space defined by height and weight. He fits a
straight line relationship (shown as the dashed line), by choosing the line, passing
through the origin, for which the sum of the squares of the deviations (one example of a
deviation is the length of the arrow shown in red) from the line is minimized — the “least
squares fit”. He calls this line “size” — a new dimension, which combines the weight and
height of a student, in a linear but not necessarily equal way (in the diagram, weight
contributes more to size than does height). He then reads off the “size” of each student
from the projection of her red arrow on the size line, and gives each student a portion of
caviar proportional to her size. The party is a great success.

This is a simple example of Principal Component Analysis, and the “size” line is called
the first principal component. The idea is to redescribe a set of measurements using a
linear combination of the original set of measurements, in the hope that the new
measurements will be simpler and more useful than the original set of measurements. If
the old set of measurements are numbers corresponding to weights w and heights h, then
the new measurement (in this case size, s) is defined by s = aw + bh, where a and b are
constants which characterize this particular class of students. The value of s associated
with a particular pair of data is simply the projection of the point representing the paired
data on the “size” line. The values of a and b were chosen in this case such that the data
points scatter evenly on either side of the size line, according to the least squares criterion
— this criterion is what defines the s as a PC. However, as we will see, it is possible to use
other values of a and b that use some other useful statistical criterion. Since the units of
“size” are arbitrary, the “size” is really defined by the angle 6 the size line makes with the
original measurement axis. For another class of students, for example composed of Sumo
wrestlers, a different pair of constants a and b might be needed (giving a different line



and angle). The new measurement, “size”, is clearly more economical that the previous
pair of measurements, height and weight. Only one set of numbers is needed to
characterize the students, rather than 2 sets. Notice however that the new measurement
contains less information that the original pair of measurements. This can be seen by
trying to reconstruct the original pair of measurements from the new single measurement
—all one knows is that the original pair of measurements lies somewhere along the red
line, and likely quite close to the size line. In fact the best guess est (w,h) of the original
pair (w,h)would be provided simply by “inverting” the size definition, i.e. est w = s/a, est
h =s/b. Of course, if the points cluster very tightly along the “size” line, then the
reconstruction will be quite accurate. It can be shown that if the scatter in the measured
weights and height both follow a Gaussian distribution, then (1) the first PC (in this case
“size”) provides the best single measurement for reconstructing the original data (i.e. a
pair of weight and height measurements; of course those paired measurements provide
the best possible description of themselves — but just one of those measurements does not
allow the other one to be determined) and (2) the average reconstruction error is just the
scatter in the points in the direction orthogonal to the first PC (shown as the dashed line
marked *“shape”), which is called the second PC. Furthermore, if one had both the “size”
and “shape” of a student, one could perfectly determine her weight and height. However,
the extra precision which the measurement of shape brings is quite small, especially if the
scatter in the shape direction is quite small (as already noted). Thus most of the
information about a particular student’s weight and height is contained in the single size
measurement (which is why it was useful for the professor’s housekeeping).

PCA is a simple example of “dimension reduction” — encoding high dimension vectors
as lower dimension vectors. It is therefore widely used for sending electronic messages —
for example sending images over the internet. In the present case the encoding of weight
and height as size reduces the dimensions from 2 to 1, with a loss of information that
depends on the scatters (i.e. variances) along the original 2 dimensions. If weight and
height were uncorrelated (so the points scattered around the height and weight axes), then
the single best measurement would still correspond to the first PC, which would be the
same as either “weight” or height” (whichever had the highest variance).

PCA is not restricted to 2 dimensional data. The technique was invented by Karl Pearson,
who thought that people could be characterized by, and perhaps actually possessed, a
general intellectual ability called “g” or “general intelligence”. Pearson studied the
academic records of large numbers of students, and supplemented them with additional
laboratory measurements. Each student therefore corresponds to a particular point in n-
dimensional space where n is the number of measurements (e.g math, physics, English,
French, geography etc). The whole collection of students define a cloud of points in n
dimensional space. Rather than defining a simple “GPA” in which each subject gets equal
weight, he chose weights a,b,c etc defining the “least squares” line through the cloud.
This is the first PC of the distribution (or “cloud”) formed by the student measurements.
Of course, this can only be done if there is such a line, i.e. if the points do cluster in n-
dimensional space. Pearson found that such a least squares line did exist, and labeled it
“general intelligence”. Of course this does not really prove that there is a real physical
thing called “intelligence”.



In this higher dimensional space, there are a large number of directions that are
orthogonal to the first PC. Just as the first PC is the directed line upon which the
projection of the original data gives the greatest possible variance, the second PC is
chosen as the direction, orthogonal to the first PC, for which the projection of the
original data has maximal variance. The third, etc PC, down to the nth PC, are
constructed in a similar way. The original data can be reconstructed exactly, with no loss
of information, from the projections on the entire set of n PCs. However, the greatest
amount of information, and hence the best possible reconstruction from a single scalar
value, is provided by the first PC, and the lower order PCs provide decreasing amounts of
information. Thus the original n dimensional data set can often be compactly described
using a limited number of PCs. If the original data has to be transmitted over a relatively
few channels (such as an optic nerve or an internet connection), it is efficient to first
encode it as a small number of PCs. It can be approximately reconstructed by projecting
the reduced and transformed data back to the original coordinates. The JPEG format used
to send image files is in principle similar to PCA. However, in the brain there is no need
to reconstruct the original data, and the transformed, more compact data can be used in
further processing.

More formally PCA can be described in the following way. Suppose we have a random
vector X whose n components are Xz, X, etc (these would be the heights and weights in the
first example, and the scores in various subjects in the second example). The elements are
assumed to have zero means (i.e. the elements represent the deviation of measurements
from their mean values, as in Fig 1). We define the covariance matrix C by C = <x x">
i.e. the average of the outer product of x with itself. The components of C, C; , are
approximately the average (over the available instances of x, for example the students in
examples 1 and 2) of the products x; x; . We define the eigenvectors e of C as the
solutions of the equation Cx =AX , i.e. those x vectors which when multiplied (from the
left) by C give vectors that are simply scaled versions of themselves (A being the scaling
factors). These are special vectors that are not rotated by C, merely rescaled. Provided
that C is symmetric (which is guaranteed by its definition, since C jj= C ;;), there will be
n different values of A ( A1,Azetc, and, correspondingly, n different eigenvectors ey, e; etc.
The n principal components are the eigenvectors of C, with the first PC being the
eigenvector for which the eigenvalue A1 is largest, etc. The eigenvalues correspond to the
variances of the projections of x along the eigenvector directions.

Example : the eigenvectors and eigenvalues of the matrix

vV C_C
cvV

are 1,1 (eigenvalue c+v) and 1,-1 (eigenvalue v-c). To check this, multiply the matrix by
each eigenvector. In each case the 2 elements of the resulting vector are (dot product of
first row of matrix with eigenvector) and (dot product of second row of matrix with
eigenvector). For the first case, the resulting vector is c+v,v+c which is simply 1,1 scaled
by the factor c+v. In the second case the resulting vector is v-c,c-v which is 1,-1 scaled by



the factor v-c. We will use these results to discuss ocular dominance columns in
neocortex.

So far we have not discussed the statistical distributions of the elements of x, beyond
saying that they are random (i.e. picked randomly from some defined distribution). PCA
can be done whatever the distribution. However, in the special (but common) case where
the elements follow Gaussian distributions, it can be shown that PCA is an optimal way
of encoding a vector x as a more compact vector (the projections of x on the n
eigenvectors). First, the projection on the first PC (shown as the red arrow head in Fig 1)
is the scalar that best represents the original vector (in several related senses, such as least
squares, maximum variance and mutual information — see below) . Second, the projection
on the second PC is the scalar that best describes the original vector once the projection
on the first PC is known. And so forth for the remaining PCs. In practice, most of the
information about the original data can be captured using only a few of the PCs, the
remainder can be thrown away, often at great savings of channel capacity, memory etc.

It can be noted that the Central Limit Theorem states that the sum of many independent
variables (whatever their distribution) tends to a Gaussian distribution.

It should be noted that PCA is a one-shot technique. It transforms correlated variables
(e.g. height and weight) to uncorrelated variables (e.g. size and shape). If PCA is applied
again, to the uncorrelated variables, no further change occurs. If the brain only did PCA,
it would only need 2 layers of neurons! The lack of effect of further PCA is related to the
fact that once an eigenvector has been found, the covariance matrix (which, in the case of
Gaussian data, completely characterizes that data) only acts to rescale the transformed
variables. Thus PCA is an example of a decorrelation technique. It is also often described
as a whitening technique, based on the following analogy. White light is composed of
equal amounts of monochromatic lights of a broad range of visible frequencies. If an
object appears white, it is because it reflects equally well all the components of white
light. If it appears colored, it reflects more light of one frequency than another eg more
green light than blue. Therefore, if an object looks green, the amount of green light it
reflects is correlated to the amount of blue light it reflects (i.e. blue light = some fraction
of the green light). The analogy is often extended to “white noise”. In the case of a
temporally fluctuating signal, white noise sounds like a hiss. White noise is composed of
a wide range of frequencies, each of equal power (like white light). If we examine the
autocovariance function of white noise (i.e. the average value of a signal multiplied by
itself, after imposing a time delay At), we find that it is zero (except of course when At =
0). It is uncorrelated. In PCA, instead of looking at a single signal at different times, we
are looking at several signals (the PCs) at the same time, but because the signals are
uncorrelated, we say that they have been whitened. Whitening is a valuable data
preprocessing step, because it ensures that signals are being conveyed efficiently —
indeed, for Gaussian signals, optimally.

That PCA is optimal for Gaussian data can be shown in several different ways:



1. Least squares reconstruction criterion. PC allows the best possible reconstruction
of the original data, in the least squares sense.

2. PCA maximizes the variance of the transformed variables. Thus in example 1, s
has greater variance than either h or w. In fact, the eigenvalues are nothing other
than the variances of the projections on the PCs.

3. PCA maximizes the Mutual Information between the original data and the
transformed data. This is a theoretical measure of how much knowledge of the
transformed data gives us knowledge of the original data.

Information theory is concerned with quantitating information (though it does not really
address the significance or utility of information). Its most basic idea is that of entropy
(represented by H), which is a measure of the uncertainty( or surprise) associated with a
signal (or, conversely, of the information that is acquired when learning the exact value
of a signal). Suppose the signal is a binary variable that takes a value 1 with probability p
and 0 with probability 1-p. (A simple example is tossing a biased coin, where the
probability of a head (1) is different from that of a tail (0)). Clearly if p = 1 we know
(without examining it) that the signal will always be 1 — its uncertainty is zero (and we
gain know information by learning its value). Also, if p = 1, uncertainty is zero. The
maximum uncertainty is when p = 0.5 (and this is when we learn the most from looking
at the signal), as is the case with an unbiased coin. If the coin has heads on both sides,
then p = 1 and there is no point in looking at the tossed coin. If we had 2 binary signals A
and B which were completely independent of each other, with “on” probabilities p; and
p2, then we would like the information gained by observing that both signals are “on” to
be the sum of the information gained by observing each, i.e.

his2 =hy + hy

Since we know that for independent signals the probability that both are “on” is p1p.
this suggests that h should be a logarithmic function of p i.e.

h 142=-log p1p2=h1 + hy = - (log p1 + log p2)

We define the entropy of a signal to be the average value of the negative log of the
probability p; of observing the signal value i:

H = <-log p> = -Z p; log p;

(Note that since p <1 log p is negative and H is positive). Given this definition of entropy,
we find that using the base 2 for the logarithms, the entropy associated with a binary
variable is 0 if p = 0 or 1 (since log 1 = 0), and 1 when p = 0.5 (since 2™ = 0.5). This is
nice, because it means we gain exactly 1 “bit” of information when we learn whether a
tossed coin is heads or tails.



Going back to observing a pair of binary variables, what happens if they are not
independent? Clearly the information associated with learning the value of A would be
lessened by learning the value of B (and if A and B were completely correlated,
observing A knowing B would be completely uninformative). We write the conditional
entropy of A knowing B as H(A|B), it is given by log (p1|p2) where “p1|p.” means “the
probability that A is 1 given that we know B is 1”.

We would like to know how much information about B observing A tells us. This is
defined as the information we get by observing A alone minus the information we get by
observing A given that we already know B, and it is called the Mutual Information
between A and B (symbol 1(A,B)). It will be given by the following equation:

I (A,B) = uncertainty A alone — uncertainty A given B = H(A) - H(A|B) = -<logp;> +
<log p1|p2>

Note that we get less information (less negative entropy) by observing A if we
already know B (unless A and B are independent). Also, the entropy of observations of B
depend on observations of A in exactly the same way i.e. I(A|B) = I(B|A)

Let us now consider the mutual information between the first PC variable s and the
original h and w variables. This measures how much “size” tells us about height and
weight.

I (s|s,w) =H (s) + H (s]h,s)

Now in this case, the value of s depends completely on h and w (since it is given by the
projection of the height-weight vector on the size vector). So the second term is zero.
Thus

I (s|s,w) = <log g(s)>
where g is the Gaussian function
g(s) = (exp - s*/20%)/(2nf°c

Now log (exp x) = X, and the expected value of s* is 6%, so | = log o (211)’%0 /2 +
(log2e)/2. Since we know that the first PC has maximal variance, it follows that PC also
maximizes the mutual information between the original variables and the transformed
variables.

What if the inputs are not Gaussian? In that case the covariance matrix no longer
completely characterizes the input statistics, and higher order terms must also be
considered (i.e. triple and higher products of input elements). These higher order terms
can be captured using a generalization of PCA called Independent Component Analysis.



Can a neural network learn to do PCA? The fact that the covariance matrix is given by
the averaged outer product of the input vector elements suggests that it can, since the
Hebb rule computes outer products of input vectors. Consider the following simple
network (essentially the idealized connectionist neuron we studied in lecture 10):

910

Idealised connectionist neuron. The neuron gives an output g which is the sum of its
weighted inputs f;.

Consider what happens if we apply a succession of input vectors to the network, each
time modifying the synapses using the Hebb rule. This means that each time we show the
network a new pattern, the postsynaptic response will be different, and so the weight
changes will be different. Even if we showed the network a pattern that it had previously
seen, the weight vector update will not be the same, because the weights (and hence the
output g) will be different due to learning of all the intervening patterns. Will the network
eventually stabilise at some fixed weight vector, or will the weight vector fluctuate
indefinitely? If it fluctuates, will it fluctuate around some average vector, or will it
change randomly, eventually visiting all possible weights? Obviously this is rather
similar to the question of whether a recurrent network will eventually stabilize.

Consider the change in a particular weight (eg wy) due to a particular pattern eg. f*. By
the Hebb rule this is given by

Aw =k gt =kt (Fow) =kt (FTw)

where w is the current weight vector and k is a learning constant. Now w reflects the sum
of all the previous weight changes, which can be calculated as follows.



The change in the entire weight vector is given by
Aw=kf (™ w) = k (FF 7 ).w=kM'w

where M is the symmetric matrix given by the outer product of the current input vector
with itself.

We will now consider the average value of the weight vector <w> and its change < Aw>
given by averaging over all possible input patterns (or at least a large number). We will
assume that k is sufficiently small that a statistically large sample of patterns is learned
before there are large changes in the weights. We get

d<w>/ dt = k<Mw> = k<M><w> = kC<w>  ........... 1)

where we have written C = <M> = < f f'>. Note that C is just the input covariance
matrix. This equation implies that the weights will increase indefinitely. This can be seen
particularly clearly in the case of a single input neuron, so that Eq 1 reduced to

d<w>/dt = G%<W> ..o eq 2

where o2 is the variance of the input neuron’s activity. The average weight will grow
exponentially (though in a jerky fashion, depending on the exact sequence of inputs).

An obvious solution in this case would be to modify the rule so that eventually the weight
stops growing. This could be achieved by modifying Eq 2 to

d<w>/dt = g°<w> - g2<w,>

where <we> is the average final or equilibrium value of the weight. We therefore
optimistically (and, by a deeper analysis, justifiably) modify Eq 1 to

d<w>/dt== C<w> - o’<wg>
The original Hebb rule is therefore modified to
Aw;=k g fi— g° w;

which is called the Oja rule. It says that the weight change is given by a Hebbian term
minus a term that depends on the square of the output activity and on the current weight.
This second term is nonHebbian but still local, depending only on quantities that are
available at the synapses themselves. One could imagine for example that postsynaptic
activity could lead to a nonlinear spine head voltage-dependent Ca increase, which could
increase the probability that a synapse would disappear. If the synaptic weight reflected
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the number of synapses, this would implement this form of activity- and weight-
dependent LTD.

At equilibrium we have d<w>/ dt =0, so
C<We> = O°<We> covviiveeiinnnnnn, Eq 2
which is identical to the PCA equation Cx = A x with A; = 6 and <w> = x.

Thus the network we have just analysed finds a Principal Component of the input
patterns. A more subtle argument shows that the average weight vector direction is not
just a principal component but the first principal component.

What is the meaning of this mumbojumbo? Every time we show a new pattern to the
network the weight vector moves in the direction of that pattern, because each weight
increases or decreases according to the corresponding element of the pattern. However, if
we just used a use-dependent rule (as in the summed vector model) the weight vector
would, on average, not change, because we assumed that the input vectors had zero-
mean. But using a Hebbian rule means in effect that the extent of the change in the
weight vector as it moves toward the current pattern depends on the output of the
postsynaptic cell, which in turn measures how similar the current pattern is to the current
weight vector. In other words, patterns that most resemble the current weight vector have
the largest effect on the weight vector. The weight vector therefore converges to the most
representative (or prototypical) pattern, which lies in the direction of the principal
component. The output of the neuron is just the projection of a particular input pattern
onto the first principal component — in other words it tells us how closely the current
pattern resembles the prototype. This output will fluctuate from pattern to pattern, since
none of them exactly resemble the prototype. (This incidentally demolishes a common
objection to “associationism” — the objection that one can only learn specific instances of
things, not idealizations which one has never actually seen). It also illustrates that the Oja
rule does “implicit” or “procedural” learning, not “declarative” or “explicit” learning.
None of the actual patterns was learned; instead an idealized pattern that was never seen
was learned. We can also see what “declarative” memory might involve: not learning of
particular sensory patterns (e.g. the pattern of light on the retina) but instead learning the
particular outputs of a set of prototype neurons (like the Oja neuron) evoked by a
particular sensory pattern.

What about the other principal components? Obviously if we just duplicate this
postsynaptic neuron, we would just duplicate the first principal component. There are
various ways to force the other n-1 postsynaptic neurons to find the other PCs. For
example, one can make asymmetrical recurrent connections from neurons computing
higher order PCs to neurons computing lower order PCs:
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A network computing the full set of 4 PCs g1, g2 etc from the 4 input neurons f1, f2 etc.
The left postsynaptic cell computes the first PC etc. Not all the feedforward and lateral
(recurrent) connections are shown

Each higher order neuron inhibits each lower order neuron; also the recurrent weights are
learned using an antiHebbian rule, forcing the neurons to be uncorrelated. Thus the
second neuron is prevented from learning the first PC, and so learns the second PC, etc.

This extended network can therefore embody all the PCs. The outputs of the neurons are
just the projections of the input patterns on the complete set of PCs. These outputs can be
used to reconstruct exactly the input pattern, although that is not really a useful thing for
the brain to do (except perhaps for witnesses in court cases — it is because the brain is not
good at this reconstruction task that witness testimony is so unreliable). Also, most of the
useful information is contained in the first few principal components.

It should be noted that because each neuron uses the Oja rule, the weight vectors for each
neuron have unit length, and therefore the output variances of each neuron are equal.
(This does not pose any problem for reconstruction: the reconstruction procedure uses
additional knowledge both about what the eigenvector is and what its eigenvalue is: in
reconstructing the heights and weights of our class of students we need to know not just
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the projections on the size vector, but also the direction of that vector). The output from
such a network is said (because of the variance equalization) to be whitened. This
corresponds to the fact that all the outputs are uncorrelated with each other (though they
may not be independent of each other). If these outputs are applied to another PC
network, there will be no change (because the covariance matrix of these inputs will be
zero everywhere but for the uniform diagonal elements). This illustrates the point
previously made, that PCA is a one shot deal.



