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Simple Neural Circuits and Linear Algebra

Perhaps the simplest possible neural circuit consists of a single postsynaptic neuron
(which we will label I) together with the set of presynaptic neurons that innervate it
(which we will label J1, J2, etc). An obvious question is, how does the sequence of spikes
emitted by I depend on the sequences of spikes in the J cells? A second obvious question
is, since the transformation from the presynaptic spikes to the postsynaptic spikes is
essentially the “computation” or “information processing” done by this circuit, how can it
be ensured that this transformation is actually useful to the organism?
The first question is one of mechanism, and the second one of purpose, but at some level
the answers to the 2 questions are interrelated, in the same way that the questions “how
does the kidney produce urine?” and “why is excretion useful?” are interrelated.
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Fig 1. The Ideal (Connectionist) Neuron. Output neuron I (bottom circle) gets synaptic
inputs from a set of n input neurons J (top circles). The synaptic strengths (or “weights”)
are labeled wj etc (arrows). The firing rate of the jth input neuron is fj, and the firing rate
of the output neuron, g, is given by the weighted sum of the input firing rates.

From your knowledge of basic cellular neurophysiology, you can see that the answer to
the first question is in principle straightforward, though exceedingly complex. One would
need to know how the presynaptic spikes travel down the various axons (Hodgkin-
Huxley equations), how these arriving spikes affect transmitter release (time course of
ICa, Ca diffusion and binding to calcium sensors, effects on statistical parameters like p
and n, cleft and postsynaptic processes like those we considered for mini generation at
the neuromuscular junction, conversion of channel opening (synaptic conductances
changes) to local voltage changes, spreading of local voltages along dendrites (using
cable theory but also considering the possibility of voltage-dependent dendritic
conductances), and finally initiation of spikes in the initial segment of I. Fortunately,
from our knowledge of these constituent events, we can make many reasonable
approximations and simplifications. Perhaps the most drastic simplification of all would
be
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(1) Rate Assumption.  Represent the activity of each presynaptic neuron not by its
detailed spike history, but a single number, its average firing frequency fj (j is an
“index” that indicates which of the J cells we are considering; thus for cell J1, j =
1 etc).

(2) Weight Assumption  Assume that a given presynaptic neuron firing at a rate fj
generates a current at the initial segment of neuron I which is proportional to the
product of fj and the total “strength” of the synapses that cell J makes on cell I.
This strength plays the role of a “weight” in a weighted sum (see below) so we
represent it quantitatively by the symbol wj . The strengths incorporate factors
such as the number and location of synapses, the amount of transmitter released,
and the number of postsynaptic receptors.

(3) Summation Assumption. Assume that all the currents arriving at the initial
segment add together linearly, so the total current is proportional to Σ fj wj which
stands for “ the sum of all the pairwise products of the presynaptic firing rates and
the corresponding presynaptic strengths” (see below)

(4) Linearity Assumption. Assume that the firing rate of the postsynaptic cell, g, is
proportional to this total current.

These assumptions can combined in the following equation:

       n
g  = Σ fj wj    ……………………………….Eq 1
      j=1

which can be written out in full as

g = f1w1 + f2w2 + f3w3………+ fnwn   ……………………………..Eq 2

where there is a product  on the right for each of the total of n presynaptic cells. Any
proportionality constants have been incorporated into the units of w.

We will now discuss these assumptions in more detail, to make sure they are reasonable,
and to see how they might be made more realistic if we were willing to use a more
elaborate equation. All the assumptions are rather drastic, but nevertheless the idealized
minicircuit that results has quite interesting computational properties, and captures some
of the key features of real neurons. Our assumptions, and their mathematical formulation,
constitute a “model”. Later on we will consider more elaborate models.

Rate Assumption . We represent the output of a neuron as a single number, its “ spike
frequency” or rate. This is often referred to as a rate-based model, or simply a rate-model.
Essentially we are assuming that the precise temporal pattern of the spikes does not
matter – the spikes could be arriving in a sudden burst, or very regularly, or randomly (in
which case the intervals between the spikes would be exponentially distributed a la
Poisson, except for very short intervals comparable to the refractory period). This would
be true if the time window over which neurons temporally sum their inputs (essentially
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the membrane time constant) was very long compared to the times between spikes. Since
neurons can fire at very low frequencies, this assumption appears at first glance to be
untenable. However, since in many cases the postsynaptic neuron receives input from a
large number of presynaptic cells, spikes will be typically arriving at quite a high rate,
even though some presynaptic cells are firing slowly. Furthermore, if many presynaptic
cells must cooperate to fire a postsynaptic cell, then most of the temporal details of the
incoming spike trains will get washed out (unless of course there are temporal
correlations in the firings of the input cells). However, there is good evidence that in
some sensory systems the precise timing of individual spikes is important.

Weight Assumption . Because we neglect the arrival times of spikes, we are picturing
the synapses as releasing transmitter at a constant rate, which depends on the spike
frequency. This leads to opening of postsynaptic ion channels, whose number would
depend linearly on the presynaptic firing rate. Thus we are neglecting possible
postsynaptic receptor saturation, the requirement for 2 transmitter molecules per receptor,
as well as the complex diffusion and binding processes we considered at the
neuromuscular junction. However, if each connection (i.e. the set of synapses formed
from a given presynaptic neuron onto the postsynaptic neuron) is comprised of many
synapses (as at the neuromuscular junction) and these synapses have fairly low
probability of release and/or are weak, the net synaptic current would be approximately
proportional to the presynaptic firing rate and to the aggregate synaptic strength, as long
as the synaptic conductance changes were small compared to the input conductance of
the cell ( Gsyn << Gin). Many synapses are formed on narrow dendrites, which will have
small values of input conductance; the resulting large local synaptic depolarization may
approach the reversal potential; the resulting nonlinearity could be offset by having
synapses scattered all over the dendritic tree rather than being concentrated at one
location – this is often seen.

Summation Assumption . All the synaptic currents induced at each connection add
together linearly at the level of the initial segment. The combined depolarization must be
much less than the driving force (Vm – Esyn); furthermore the current must flow passively
along the dendrite to the cell body. In reality it is likely that there are active voltage-
dependent dendritic channels. However there is some evidence that the effect of these
active conductances is to compensate for the attenuation and temporal distortion
introduced by the cable properties of the dendrites, so that the overall transfer of charge
from synapse to initial segment is surprisingly faithful.

Linearity Assumption . If the H-H equations are supplemented by A-currents then
computer calculations suggest that the relation between firing rate and injected current
can be quite linear, at least above threshold and at frequencies below the reciprocal of the
refractory period. Another way to approach this issue is to consider a highly simplified
picture of spike firing called Leaky Integrator Firing. In this model, the cell is considered
to be purely passive, except that whenever a fixed voltage threshold is reached the cell
fires an infinitely short spike, following which the membrane potential resets to rest.
Following a refractory period τref the membrane potential then passively depolarizes
again (in response to the applied current I). It can be shown [see Koch pg 338] that the
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firing frequency for this model is given by 1/f = τref - τm ln (1-It/I) where It is the threshold
current. For short τref and large I this becomes simply f =  I/τm It i.e. the postulated linear
relation.

Returning to our basic linear model, Eq 1 or 2 , we see that the postsynaptic firing rate is
given as a linear sum of the weighted presynaptic firing rates, the weights being the
synaptic strengths (the units in which the strengths are measured incorporate various
proportionality constants). This idealized picture of a real neuron is sometimes known as
the generic “connectionist” neuron, because the essence of the computation  performed is
contained in the pattern of connections it receives, rather than the details of the
biophysical properties of the neurons themselves. (However, connectionist neurons often
assume a nonlinear f-I assumption).

At this point we should consider whether the values of f and w can be allowed to take
negative values. At first glance this makes little sense: neurons cannot have negative
firing rates, and shunting (chloride dependent) inhibition does not inject hyperpolarizing
current. However, mathematical analysis is made easier by allowing negative numbers.
Furthermore, we can imagine that neurons with negative firing rates are in fact neurons
with positive firing rates whose excitatory synapses have all been made inhibitory (and
vice versa). In the real brain, both negative and positive quantities (eg shade and light )
are represented as the positive firing rates of 2 sorts of neurons working in “push-pull”:
one cell carries the positive part of the signal, and another the negative part. So our
idealized neuron can be thought of as combining a pair of more realistic neurons.  Also,
even though we described GABA-A inhibition as primarily due to shunting, the actual
effect, in both H-H neurons and LIF neurons, is close to subtractive (i.e. linear). This
arises because while shunting decreases τm it increases  It  by the same amount. The
model also violates “Dale’s Law” – that one neuron uses 1 transmitter, such as glutamate
or GABA, and is therefore unlikely to make both excitatory and inhibitory synapses.
Again our ideal neuron collapses both types of neuron, which in the brain are distinct,
into one.

What significance does Eq 1 (or Eq 2) have? The brain is primarily interested in patterns,
that is, sets of numbers (brightnesses, pressures, firing rates, etc). The set of presynaptic
firing rates f1, f2, etc constitutes a pattern. For example, this could be the firing rates of
photoreceptors in the eye that are responding to a particular pattern of light (i.e. an
image). In this case the pattern f1,f2,etc would be the various pixel values across an
image. In mathematics we call such a pattern (i.e. an ordered set of numbers) a vector. So
the set of firing rates f1, f2 etc is a vector. A convenient notation for the set of numbers
f1,f2,… is the symbol f (note the bold face). f is not a single number, it is an entire set of
numbers. The components of f are f1,f2,f3…etc all the way up to fn (assuming there are n
presynaptic neurons altogether). We say that the dimensionality of f is n. The boldface
warns us that f cannot be treated as a single number. But if we multiply each component
of f by a (where a is some number), then the result can be written af (meaning af1 + af2
……+afn). Also, the sum of 2 vectors f and w is the vector f1+g1,f2+g2……
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Now in equation 1 (or 2) we have two sets of patterns, or vectors : f1,f2…..fn and
w1,w2,…wn. The first vector is the firing (or activity) vector v and the second vector is
the weight (or strength) vector w. We call the weighted sum Σ fj wj    the “dot product” or
“inner product’ of f and w (since it is the sum of the products of the individual
components of the vectors). The dot product of 2 vectors f and w is written f . w. The idea
that a neuron may compute the dot product of its input vector and its weight vector is one
of the most important ideas in neuroscience.

[Note on notation. A vector is an ordered set of numbers, which we can write either as a
column of numbers or a row of numbers. This leads to the notation f for a row vector and
fT for a column vector (T indicates transposition). We use the convention that fTg = f.g
(i.e. that a dot product is a column vector times a row vector). The reverse order, gfT,
defines the so-called “outer product”, which is a matrix X whose element in column j and
row i,  x j,i , is given by the jth element of f and the ith element of g. ]

Why is this idea so important? It is because the dot product is a simple measure of the
similarity of 2 vectors, and since the brain is primarily interested in patterns, and their
similarities, the dot product operation becomes vital. However, we have to be a bit
careful about comparing patterns of numbers. In one sense the patterns 1,2,3 and 3,6,9 are
very similar : they are scaled versions of each other , the scaling factor being 3. In
another sense 1,2,3 is quite similar to 2,2,2 (they are all small numbers). The first
similarity is like that between dim and bright pictures of a cow, the second similarity is
like that between a dim picture of a cow and a dim picture of a tiger. It is usually more
important in life to be able to distinguish a cow from a tiger than a cow in shadow from a
cow in sunlight. We can make this more precise by thinking about the direction and
length of vectors. Let us start by considering a 2 dimensional vector f1 with components
f1

1 and f2
1. We can plot this vector as a point on a graph whose abscissa (x-axis)

represents f1 and whose ordinate (y-axis) represents f2. However the vector is actually the
relationship between this point and the origin, i.e. the line between f1

1,f2
1 and 0,0. This

line has both direction and length. Now on the same graph place a second vector f2

(notice that the superscripts here do not imply “raising to a power”: they are simply
distinguishing labels on our 2 vectors). If f 2 = a f 1 (i.e. just a scaled version), then the 2
points will lie along the same line, i.e. they share direction. However,  if the relative
values of the components of each vector are different, they have different directions, even
if the lengths of the lines linking the points to the origin ( the lengths of the vectors) are
identical. In 2 dimensions the lengths of the vectors are equal to the hypotenuses of the
right triangles whose other sides’ lengths are the vector components. These vector lengths
are calculated using Pythagoras’s theorem.
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Fig 2. Visualising Vectors. 2 dimensional vectors, which have just pairs of elements (or
components), can be drawn on paper. For example the vector f1, with components f1

1 and
f2

1, is the dotted line connecting the filled circle to the origin. The vector f2 is the line
connecting the open circle to the origin. These 2 vectors differ in both length and
direction. The angle between the vectors in θ. If the vectors are just scaled versions of
each other, the angle is zero. Note the length of vector f1 is equal to that of the dashed
line, which is the hypotenuse of the right triangle formed by 0-f1

1 and 0-f2
1. It is thus

given by the square root of (f1
1 f1

1) + (f2
1 f2

1)

We would like our measure of similarity to be 1 when the 2 vectors have the same
direction, and 0 when they lie at ninety degrees to each other (that is, they are
orthogonal). In other words, we want our measure of similarity to be 1 when the angle
between the vectors  (denoted θ) is zero, and to be 0 when the angle is 90 degrees. This is
achieved by using the cosine of θ (cos 0o = 1, cos 90o = 0). Now it can be shown that for
the 2 vectors f and w separated by the angle θ

cos θ = f . w / (f . f )1/2 (w . w)1/2   ……………………………..Eq 3

where (f . f )1/2  (i.e. the square root of the dot product of f with itself) is the length of the
vector f, and similarly for w. (These lengths result from extending Pythagoras’s theorem
to higher dimensions).

Thus, provided we are comparing 2 vectors of the same length (preferably unit length),
their dot product provides a natural measure of similarity. In a sense, the basic
computation performed by the generic connectionist neuron is a measurement of the
similarity between its current input pattern f and its stored reference pattern w. Although
directions and lengths are most easily depicted in 2 dimensions, and can only be
visualized up to 3 dimensions, all these concepts have validity in many dimensions.
Patterns are just vectors in high dimensional space, but they still point in specific

f1

f2 f2

f1

f1
1

f2
1

θ
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directions in that space, and have specific lengths. Images are vectors whose components
are the pixels comprising the image. Smells are vectors which are represented in the brain
by the relative activity of the 1000 different glomeruli in the olfactory bulb. A musical
chord is a vector whose elements are the loudnesses of the notes from top to bottom of
the keyboard.

One more concept we need, already touched on above, is that of orthogonality. If 2
patterns are as different as possible, we say that they are orthogonal (because the
corresponding vectors are at right angles). A simple example would be 2 DNA sequences
which differ in every position.  ( The number of positions in which each base is the same,
divided by the total number of bases, is just cos θ; here the length of the vector is just the
chain length). The dot product of 2 orthogonal vectors is zero whatever their length (look
at Eq 3: if θ = 90o,  cos θ = 0).

We can illustrate these ideas using a very simple memory model. A key idea in
neuroscience, which we will explore much more, is that learning occurs by changing the
strengths of synaptic connections (although changes in the firing properties of neurons
may also be important) as a result of neural activity. These connections could be changed
by some external agency, such as an omniscient homunculus deep inside the brain, which
would be able to visit each synapse and regulated its strength according to some pre-
ordained recipe. In a way, such a genie does exist: our genomes. We saw in the olfactory
system that elaborate and highly specific patterns of connections could be laid down by a
set of chemoaffinity labels, the odorant receptor proteins, in the absence of neural signals.
However, this approach to wiring already consumed some 3% of the mammalian genome
just for the first set of neurons alone. It seems impossible that the whole brain could be
wired up in this way, even if this were desirable. However, it is not desirable since it
would mean that everyone’s brain would work the same, even though their circumstances
and experience are completely different. Such “hardwiring” is only suitable when
environmental regularities persist over many thousands of generations. Even for
regularities that have persisted for aeons, such as natural scenery and animal behaviors,
these regularities are so complex that it is probably impossible to encode them using a
rather small genome.

So neuroscientists believe that the strengths of synapses are controlled by their past
history of electrical activity. Indeed the strengths of synapses must be controlled, not by
the global pattern of activity across a set of neurons, but by the activity that actually
reaches the synapse (i.e. the pre- and postsynaptic spikes, possibly combined with some
general neuromodulatory influences). We call this local learning.

In the case of a single postsynaptic neuron receiving inputs from a set of presynaptic
cells, the simplest way for the synaptic strengths to change would be as a consequence of
the arrival of the presynaptic spikes themselves at the synapses. This would be a use-
dependent synaptic learning rule, rather like the strengthening of muscles according to
how much exercise they receive. This learning rule could be written (∆ stands for “the
change in…”
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∆ wj = fj                    …………….Eq 4

We could incorporate this into our model as follows. Let us try to learn a set of m input
patterns, f1,f2,….fk…fm ( note that each pattern is a vector comprised of the activities f1,f2
etc; the superscripts label the patterns – they do NOT mean that we are raising the vector
to a power, which is a meaningless idea ; we will assume that all the input vectors are
orthogonal and have unit length; also the average value of any element across all the
patterns is assumed to be zero – on a computer screen this would be represented as gray,
and we are assuming that a pixel is as likely to be black as it is to be white, which over a
sufficient set of images is likely to be true). If we start with all the strengths set at zero,
then the first pattern on the inputs would cause the strength of the J1-I connection to
increase to a level f1

1 (i.e. the weight w1 increases to the value given by the firing rate of
the first presynaptic neuron). Similarly w2 increases to f2

1 and all the elements of  f 1 get
“imprinted” on the strength vector. The next pattern f2 produces a further increase in
weight (actually, since the elements of the vectors can take negative values, the strengths
could also decrease). The final set of weights resulting from learning all m patterns will
be given by

       m
w = Σ f k……………………eq 5
         k=1

where f k refers to the kth pattern. The sum is over all the m patterns (i.e. the final weight
vector is given by the sum of the changes due to all the individual patterns). We are
adding together corresponding elements of all the input vectors.

What will be the output of the postsynaptic neuron if one of the learned patterns (say
pattern number 1) is provided as a test input ? It will be given by

                        m                                            m
gk  =  w . f 1 =  Σ   f k . f 1 = f1 . f1

 +  Σ    fk . f 1            …………..eq 6
                       k=1                           k not 1

What we have done here is first to define the output in terms of the dot product of the
current input vector f 1and the learned weight vector w, which we then replaced by the
sum of all the previously learned patterns Σ fk , which is itself a vector. Now, the output is
composed of 2 parts: a part f 1 . f 1  which is due to the dot product of the current pattern
with the same but previously learned pattern (which was imprinted on the weights) and a
part Σ fk . f 1 (k not equal to 1) which reflects the sum of all the dot products of the
current input pattern with all the previously learned patterns except the current  pattern
(which is expressed by the notation j is not equal to 1).
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Now the term  f1 . f1
 is just the length of the test input vector, which we assumed to be 1.

Since all the patterns were assumed orthogonal the term Σ fk . f 1 must be zero. Thus our
output neuron gives an output of one if it “sees” one of the stored patterns. However, if it
is shown a new pattern, still orthogonal to all the stored patterns, it will give output zero.
It signals that it “recognizes” the stored pattern but does not recognize the new pattern.

The pattern recognizer only works for orthogonal patterns, i.e. patterns that are very
different. (A simple example would be 1111 and 1010, for polynucleotide sequences; see
next lecture for discussion of orthogonality of polynucleotides). It recognizes perfectly up
to n familiar orthogonal patterns.

What happens if the patterns are not orthogonal – that is, they are not as different from
each other as possible? If the summed vector memory is shown a new pattern that
resembles one of the remembered patterns, it will generate an output that is greater than 0
(because the second term in Eq 6 will no longer be exactly 0). However, if the
dimensionality is very high then random patterns are almost orthogonal (provided the
mean values of the elements are zero). This is because the dot products (which is
proportional to cos θ) of any pair of such random vectors will get closer to zero as the
dimensionality increases (although the individual products of corresponding elements
will scatter around zero, their sums will approach zero more closely as the number of
terms increases, and the standard deviation around zero of the dot products will fall as the
reciprocal of the square root of the dimensionality).
We can assess the performance of the summed vector memory as a recognition device by
computing its “signal to noise ratio” (S/N), defined as the average of the squares of the
output when given  stored items divided by the average  squared output  novel items. (We
use the squares of the output to ensure that the the noise measurement is zero when
shown novel items). It can be shown that for random patterns S/N = n/m (n is the
dimensionality, i.e. the number of input patterns, and m is the number of stored patterns).
The memory works best when it only stores a few patterns. It gets confused when trying
to store too many patterns.
However, though the neuron signals pattern recognition, it does not allow retrieval of the
pattern itself – obviously because the pattern itself contains a number of elements,
whereas the output  neuron itself is just one element. It acts as a familiarity meter, but not
a real memory. (Note that often we can remember we have seen someone before, even
though we can’t remember their name; likewise we know we heard a tune before even
though we cannot hum it ). To do a better job, we need an entire set of p output neurons.
Each of these output neurons should get input from each of the set of n input neurons,
according to the idealized description above. So the output of the ith output cell would be
given by

g i  =  f . w i ………………………eq 7

where wi is the vector of synaptic weights onto the ith output cell.

What will the vector of output activities g be given by? The ith element of this vector is
given by the dot product of the input vector and the relevant weight vector wi . So the
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whole output vector will depend on the entire set of  p weight vectors. We can list the
elements of these weight vectors as the rows of a table of strengths w i, j . The rows of the
table correspond to the different postsynaptic cells labeled i. The columns of the table
correspond to the different presynaptic cells labeled j. The weight w i, j  is  the strength of
the connections from presynaptic neuron j to postsynaptic neuron i. Such a table of
elements is called a matrix; we represent it using the symbol W (bold capitals are used
for matrices). Using this notation we can write the output vector g as

g = Wf       ……………..8

Note very carefully that none of the symbols g, f and W stand for single numbers. They
stand for sets of numbers. This equation means that the ith element of g is calculated by
taking the dot product of the ith row of numbers of the matrix W with the current input
vector f (this dot product could be written as fTgi , since f is a column vector and gi is a
row vector.)

So the synaptic matrix W (which represents the entire n by p set of connections from J
cells to I cells) changes the input vector f to an output vector g. The actual output pattern
we get depends on both the input vector and the weight matrix.

How can we interpret this process of transforming one vector into another using the set of
rules contained in W? Remember that a vector is an oriented line in hyperspace. So the
change wrought by W must correspond to twisting this line into a new direction and
stretching (or shrinking) it to a new length. The effect of W depends on the vector it acts
on: it could change its length, or direction, or both. Let’s look at this in 2 dimensions, i.e
using 2 component vectors. (Fig 3).

f1f2

W
g1

g2W
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Fig 3. The matrix rotates and shortens the vector f1 into a new vector f2. The same matrix
may rotate and stretch another vector g1 into g2. The illustration is just for 2-dimensional
vectors, but remains true in higher dimensions.

Now we have a way of thinking about memory. We want to learn a set of weights W
such that whenever we are presented with an input pattern f (e.g. a face) we will respond
with an output pattern g (e.g. a name). This must be achieved by adjusting the individual
weight w i,j using the information contained in f and g. To be neurobiologically realistic
this means that the weight w i, j should be adjusted locally, that is, using the activity of the
presynaptic neuron that forms that connection (i.e. fj ) and the activity of the postsynaptic
neuron receiving the connection (i.e. gi). How should f j and g i be combined to adjust
w i,j ?

This problem was considered by many early psychologists and anatomists, but the most
influential suggestion was made by Donald Hebb, who wrote:-

When an axon of cell A is near enough to excite a cell B and repeatedly or
persistently takes part in firing it, some growth process or metabolic change takes
place in one or both cells such that A’s efficiency as one of the cells firing B is
increased.

In modern terms we would say that the synaptic connection from A to B gets stronger
whenever A’s firing  contributes to B’s firing. One  could replace “contributes to” by
“tends to cause” or even “causes”. However, here one must be careful. The synapses
between A and B know nothing about the actual causes of B’s firing. The only local
information that is present at the synapses themselves is the firing of A and the firing of
B. If the connection is initially very weak, then A could contribute very little to the firing
of B, which must be due to other inputs to B. But from the A-B synapse’s point of view,
it appears that A causes B’s firing whenever the firing of B follows the firing of A after a
suitable synaptic delay. We will return to this point later, but for the moment let’s just
summarise Hebb’s Rule as “neurons that fire together, wire together” – i.e. connections
strengthen as a result of correlated spiking across them. At the synaptic level, each pair of
pre-post spikes that occur with a suitable time delay would lead to a small increase in the
connection strength (or, possibly, a raised probability of a larger strength increase).

It is straightforward to incorporate this idea into our idealized neuron models. Since we
are using a rate code, it is natural to think of neurons as firing randomly at some mean
rate f (in fact neurons in the brain often do have interval spike intervals that are close to
exponential). If A is firing at rate f and B is firing at rate g, what is the probability that an
A spike will occur “at the same time as” (i.e. within a fixed short interval) a B spike. It is
given by the product of the probability that the neurons will fire a spike within the
interval, which is proportional to the product fg. This suggests the following
mathematical formulation of Hebb’s postulate:
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∆ w i,j  = α fj gi

where α is a constant (called a learning constant because it represents how much
correlated spikes increase w). This looks reasonable: the rule is local (the weight change
depends only on the activities arriving at the synapses comprising the weight). It is also
about as simple as possible. We will look at the consequences of using this rule in the
next lecture.


