Statistics

Statistics are used in a variety of ways in neuroscience. Perhaps the most familiar
example is trying to decide whether some experimental results are reliable, using tests
such as the t-test. However, one also often wants to analyse intrinsically random data,
such as the number of quanta released in synaptic transmission, the opening and closing
of ion channels, and the patterns of neural firing. Perhaps most interestingly, there is
increasing realization that the brain itself functions as a statistical analyser of the
environment. Our moment-to-moment experiences are ever different, and yet the brain
learns to make sense of the turbulence. Actually, the endlessly shifting pattern of inputs
produced by our world is far more variable than we realize, and the world appears
relatively stable precisely because our brain has learned to understand it. To someone
who knows no statistics at all, much of this lecture will seem like a random series of
sounds and symbols, while to an expert it will appear to be crude summary of basic
concepts.

Random Variables

Often in science, especially biology, if one makes repeated measurements of the same
variable one gets different answers, even though the situation appears to be exactly the
same. For example, in an electrophysiological experiment one might find that there is
trial to trial fluctuation in a synaptic potential, either because of instrumental noise, or
because of variation in the number of released vesicles. We say that potential is a
“random variable”. A random variable arises when measurements vary even though
circumstances are apparently similar. In some cases the variation reflects the fact that the
circumstances are actually varying in an unknown manner, but in others ( quantum
mechanics), the variation appears to be essential, and is not due to the operation of
“unknown” or “hidden” mechanisms.

A very simple example is the outcome of tossing a die: there are 6 possible values of the
variable, the face value of the die. In this case all outcomes are equally likely. Another
example is tossing a bunch of n coins, and recording the number of heads. In this case
there are n+1 possible values of the random variable, but clearly it is far more likely that
half the coins will be heads than that all of them will be (since there are many different
patterns of the former outcome than of the latter). Another example would be a variable
defined as the product of the face value of throwing a pair of dice. Finally, one could
measure the heights of a defined sample of humans (for example, the students in a class).

In the coin and dice tossing examples the random variables are discrete, since they can
only take on integral values. In the human height case, the variable can take a continuous
range of values, so the random variable “height” is continuous. We will be concerned
with both discrete and continuous random variables.

A random variable takes on various possible values, and by making many repeated
measurements of the variable in successive “trials” or “collections” one can deduce the
relative frequency with which the variable takes particular discrete values (or, in the case
of a random variable, lies between particular limits). The relationship between relative



frequency and actual value (or interval of values, in the case of a continuous random
variable) is known as the distribution of the random variable. In the limit where the
number of observations becomes infinite, we refer to the relative frequency as the
probability. For example, in the die-tossing example, the probabilities of observing the 6
possible outcomes are each 1/6, and the random variable is distributed uniformly. In the
coin-tossing example, the probability that all n coins are heads (which we could write as
Px=n ) IS much less than the probability that half the coins are heads (px=n/2 ). Here the
distribution is nonuniform, and as we will see pyx as a function of x follows the binomial
distribution. In the height example, typically the results are distributed around the mean
height in a “normal” or “Gaussian” manner. In the Boltzmann distribution, we considered
a particle, subject to thermal agitation, in either a high energy state or a low energy state
(just like a coin that can be heads or tails). The distribution of pni/pio is exp-AE/KT, and
since pio = 1-pni we got pyi = 1/(1+expAE/KT).

Some discrete distributions.

Let us consider coin-tossing in more detail. We will consider a generalized version in
which coins are biased, so the probability that a coin falls heads (which we will call p) is
not necessarily the same as the probability of it falling tails. We want to calculate the
probability that we will see x heads if we repeatedly throw a collection of n coins. The
key assumptions we will make are (1) all the coins behave identically (same value of p)
and (2) each coin behaves independently (the state of one coin does not depend on the
others).

The key idea we need is that the probability of a joint event such as one coin being heads
when another is also heads is given by the product of the individual probabilities. What is
the probability of observing one specific configuration (or arrangement) of x heads in a
collection of n coins out of the 2" possible arrangements(eg HHTHTTH)? Clearly it will
be p* (1-p)™™ (the probability that x of the coins will be heads times the probability that n-
x of them will be tails). Note that if p = 0.5, p*(1-p)"™ = 0.5", which is the reciprocal of
the number of arrangements. However, we are not interested in the probability of a
specific configuration, but that of any of the coinfigurations (bad pun) that have the same
number of heads (such as HHTHTTH and HHHTTHT). How many configurations will
have the same number of heads? There is only one configuration that has all heads (x=n),
but there are n configurations that have 1 tail (x=n-1), since the any one of the n coins
could be tails. More generally, we want to know how many combinations of x objects out
of a total of n can be made, which is n!/(n-x)!x!

[ Derivation: we can choose x objects in x steps (the first, the second, finally the xth). In
the first step we have our choice of n objects, but in the second step only (n-1) are left to
choose, and so on until the last, which can be chosen in (n-x) ways. So we can choose x
objects in n(n-1)(n-2)....(n-x) = n!/(n-x)! ways. However, having chosen our x objects,
they can be arranged in x! ways, since the first can be chosen in x ways, the second in x-1
ways etc. So of all the ways of choosing x out of n (i.e. n!/(n-x)!x!) , only a fraction 1/x!
of them will show up as distinguishable.]

Thus the overall result is



Px= [P*(1-p)™ In/(n-x)!x!

which is the binomial distribution. For example, if n = 3, then the probabilities of getting
0,1,2, or 3 heads when p = 0.5 (i.e. tossing 3 unbiassed coins) are .125, .375, .375 and
125,

As a class exercise we will calculate px for the case n = 6.

The answers are

p0 = .0156 1
pl=.0938 5

p2 = .2344 12
p3=.3125 16
p4 = .2344 12
p5= .0938 5
p6 = .0156 1

(the third column shows the expected number of heads or tails out of 50 trials)

An obvious question is, what is the average number of heads (m) that will be found? This
is given, by m = Zp,x where the sum runs over all possible outcomes i.e. from x=0 to
x=n. This corresponds to a weighted sum, the contribution of each possible outcome
being weighted by the probability of that outcome. The result, for the binomial
distribution, is

m =np

which is intuitively right — it is just the probability that a coin is heads times the number
of coins that are tossed.

We would also like to know how much the actual outcome scatters around this mean. The
scatter is measured by the variance, 6, defined by var x = <(x —=m)®> where we use angle
brackets to denote “average value”. For the binomial distribution it is given by

o” = np(1-p).

The relation between 6 and m is therefore an inverted parabola. This relation makes
sense — if p is very small, then we will almost always get the result x = 0 (very little
variation). If p is close to 1, again we will almost always get x = 1. The maximum
variance is achieved when p = 0.5.

It is useful to note that one can estimate n and p from o and m using the above 2
equations.



A practical application of the Binomial distribution

The existence of ion channels in biological membranes was first demonstrated by Katz
and Miledi using noise analysis of the fluctuations of the depolarization produced by
ACh at the neuromuscular junction. Shortly after, Andersen and Stevens used voltage
clamp to provide a more direct estimate of the single channel conductance. The basic
experiment is to record the steady depolarization (or the underlying current) at successive
times and convert these measurements to the corresponding (slightly fluctuating)
conductance change using Ohm’s law. The conductance change fluctuates because the
number of open channel is varying in a stochastic or probabalistic way. This provides
estimates of both the mean conductance change m and the variance of the conductance
change o . If the probability that a given channel is open is p, and this is independent of
what the other channels are doing, the fluctuations should follow a binomial distribution,
and a plot of 6® against m as p is varied (for example, by varying the ACh concentration)
should be an inverted parabola. In these experiments the relation was actually linear,
corresponding to the foot of the parabola, where p << 1. The single channel conductance
y could therefore be calculated using the formula o%m = y’np/ynp and canceling the
unknown np. The result was a value of about 30 pS, which is only slightly less than the
value 45 pS subsequently directly determine by single channel analysis.

Two limiting cases of the binomial distribution.
Poisson

If n becomes very large, and p becomes very small, such that the product np remains
finite, the Binomial distribution reduces to an important special case, the Poisson
distribution, defined by

Py = €™ m/x!
where m = np (and ¢®= m).

If n becomes very large, then x can take on an enormous range of possible numbers.
Although this is also a discrete distribution, it can be applied to events that occur
randomly in time, at some constant average frequency f (per unit time), such as clicks of
a Geiger counter. First, we can ask what is the probability of observing 0,1,2... clicks in a
given time interval t (say 1 sec). In theory it is eventually possible that a very large
number of events could occur, by chance, within a given time interval, though this would
have a vanishingly small probability. Thus if we consider the number of events x out of
the total possible n events, we expect a discrete Poisson distribution. A famous example
is the annual number of fatal horsekicks in the 19™ century Prussian cavalry. Fortunately
the probability of fatal horsekicks was very low, but because there were many soldiers,
there were sometimes 1, 2 or even 3 deaths per year. It should be noted that if one tries to
estimate n and p separately from data that are Poisson distributed, one will get
measningless answers (very large values of n and small values of p, which change



enormously if only a few more observations are made). This is because the Poisson
distribution depends only on the product np.

However, we could also consider the continuous distribution of the gap durations that are
longer than a given time t. By definition within such a gap no events occur, so we need to
consider the Poisson distribution for x = 0. This leads to

m_ o ft

pO:e' =e-

where po refers to the probability of observing a gap lasting greater than t seconds.

Clearly, all the gaps between events must be greater than zero. So fort = 0, po = 1. Also,
if the events are occurring at a nonzero rate, we will never observe a gap that lasts
forever. These 2 extremes are clearly correctly predicted by the formula. This formula is
the continuous Poisson distribution for randomly occurring events. The “time constant”
(or 1/e time) for the exponential is simply the reciprocal of the event frequency. It is
equal to the mean gap duration. Note that because the distribution is nonsymmetric
(skewed) the median gap duration (0.693 f) is less than the mean. It is a cumulative
continuous distribution, because it asks what is the probability that a random variable (in
this case the time between events) is greater than a given quantity. The cumulative
distribution of the probability that the time is less than a given interval is 1-e™.

Let us now examine the distribution of the duration of gaps between events. In this case,
it doesn’t really make sense to ask what is the probability of finding a gap of a specific
duration. Instead, we ask what is the probability of finding a gap of duration lying
between t and At, as a function of t. At is a “bin size”. If we divide this probability by the
time step At, we get a “probability density” (just as we get a density of a substance by
dividing the mass by the volume). We then take the limit At approaching zero to define a
probability density function, which gives the distribution of the gaps between events.
This “pdf” is given by the derivative of the cumulative distribution of gaps that are NOT
longer than t. So

pdf (gap duration) = d(1-e™)/ dt = fe™

It has exactly the same shape as the previous cumulative distribution, and its “time
constant” is also equal to the reciprocal of the frequency. Once again the time constant is
equal to the reciprocal frequency. In practice, one plots a discrete approximation to the
pdf, by using finite time bins At.

The Bus Paradox

An interesting application is to consider how long one must expect to wait for a bus if
one is equally likely to arrive at the bus-stop at any time, given that the buses are equally
likely to arrive at any time, with an average frequency of 1 per hour. Intuitively one
thinks that one is equally likely to arrive just before the bus arrives as just after, therefore
typically needing to wait 1/2 hour. However, this would only be true if the bus arrives at



exactly 1 hour intervals. But because the bus is arriving randomly, it is much more likely
to arrive during long waits than during short waits (or conversely, one is much more
likely to arrive during long interbus intervals). Thus the bus arrived on average 1 hour
before you arrived at the bus-stop, and the next bus will on average arrive in 1 hour. Ina
way it makes sense — whenever you arrive, the bus is not there, and the next bus arrives
independently of when the last bus came. The key assumption here is that the events are
independent — the probability of an event does NOT depend on whether other events have
already happened, or when.

Normal.

If we let n grow without constraining p, then there are more and more possible values of
X. In the limit of large n, x becomes effectively a continuous number, and we need the pdf
of x. It can be shown that in this case the Binomial distribution approaches the Normal or
Gaussian distribution:

pdf(x) = [exp-(x-m)*/20%]/ G root 2Tt

where m and o the same significance as in the full Binomial distribution (i.e. np and
np(1-p)). This is a symmetrical bell-shaped curve. The area under the curve is one. As
o increases, the curve get wider and flatter, preserving the area. The cumulative normal
distribution is also interesting: it is the integral of the pdf, and is given by the “error
function” of x. It plots the probability that the variable takes on a value less than x, as a
function of x.

The fact that the Binomial approaches the Normal as n increases is a special case of a
remarkable general principle. According to the central limit theorem the sum of many
independent random variables drawn from identical distributions of any shape also
approaches the Normal. In the case of the binomial, we are actually dealing with the sum
of the values of n random variables (the face values of individual coins), each of which
have the distribution po = p and p; = (1-p). We explicitly used the independence of the
individual random variables to deduce the distribution. In many cases in nature, such as
height, it is suspected that the measured variable is the result of the addition of many
separate independent variables (such as nutrition, exercise, genetics etc) each of which
may have specific, and perhaps even rather unusual, distributions.

The normal distribution also arises in diffusion problems- it describes the probability of
finding a particle at a given distance x from the starting point, and the variance reflects
the diffusion coefficient. This is because the particle undergoes a random walk from the
origin. In 1 dimension, at every moment the particle “tosses a coin” to decide whether to
go backwards or forwards, so the outcome is described by a very large number of coin
tosses.



2 or more random variables

If measurements of 2 different fluctuating quantities are made (for example the heights x
and and weights y of students in a class), we can define a joint probability density
function, the probability that x has a given value given that y has a given value, a 3D plot
which can be drawn in 2D as a contour plot, or as a scatter plot showing individual
observations. It is often useful to first subtract the relevant mean from the 2 random
variables, so the distribution is centered on the origin. As well as the variance of the
individual variables, we can also consider their covariance which is the average value of
the product of the 2 zero-mean variables. It is a measure of how one variable increases as
the other increases. If for example the points scatter equally about one of the axes, the
covariance will be zero — we say the variables are uncorrelated.

In linear regression analysis, we try to fit the best straight line to the scattered data. Best
is defined as the line that minimizes the sum of the squared distances of the data from the
line, the distance being measured by a line through the point that is perpendicular to the
proposed straight regression line. We could consider these vertical intersections on the
regression line as representing a new random variable which is given by a weighted sum
of the 2 original variables, the weights depending on the slope of the regression line. For
example, in the case of the height and weight of the students in a class, the new variable
could be called “size”, a measurement which takes both weight and height into account.
If we could only assign one variable to each student, we might choose this new size
variable rather than one of the original variables, because provided the original variables
are correlated, the new variable gives information about both the original variables.

If the 2 variables, say x and y, are both normally distributed, then the closeness with
which the data cluster around the fitted regression line is measured by Pearson’s
correlation coefficient r, which is given by

R = cov (y,x)/ root var x vary.
If all the points lie exactly on the line, then R = 1.

The joint distribution of n random variables is n dimensional. A simple way to
characterise the relation between these variables is to construct the covariance matrix,
which is made of all the covariances (i.e. average pairwise products) of the zero-mean
variables. The entries along the diagonal are the variances, and as expected if the
offdiagonal elements (the covariances) are zero, the variables are uncorrelated. It can be
shown that the direction of the least squares line that best fits the data is also the direction
of the leading eigenvector of the covariance matrix (the eigenvectors of a matrix are sets
of variables values which are not rotated by multiplication by the matrix). These
directions are also known as principal components. It can be shown that neurons with
Hebbian synapses perform principle component analysis, and these neurons provide
statistically optimal representation of their inputs if these inputs have a normal
distribution. However, Gaussian inputs are quite rare in the real world, and the brain
probably performs even more powerful statistical analysis than least squares.



The Brain and the World

The task of the brain is to understand the world, i.e. to answer all questions such as given
X,¥,Z.... what is X,Y,Z...? This essentially involves constructing the entire joint pdf for
all input and output variables (including at least 100 million retinal pixel values). Even if
this pdf is only determined to within 10% accuracy, this still involves well over 10 ™"
millon 4 jantities, which is clearly impossible. Fortunately, the task is made easier by 2
important considerations (1) the pdf seems to be smooth (if yellow bananas are good,
slightly green or brown bananas are at least edible) (2) it is mostly empty (there are no
blue or orange bananas). It is an interesting question whether a Hebb rule can be used to
estimate this redundant but still immensely complex pdf.
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