
1

The Linear Associator

We want to remember the pattern g1 when we are shown the pattern f1. We call this
“associating” g1 with f1.This means that when we impose the input vector f1on the input
neurons, we want the output of neuron I1 to be g1

1, and so on for all the output neurons. If
we had learned pattern f1 using the summed vector rule Eq 4, we would have obtained the
output value 1 for g1

1 (the assumed length of the input vector). But if instead we had used
the Hebb rule during learning, with the output neuron’s activity being set at the value g1

1

(i.e. the vector of weight changes for I1 would be g1
1f1 instead of just f1) we would recall

g1
1 as the output. But this is exactly what we want! So using the Hebb rule during

learning, with input and output vectors set equal to the desired association, results in
remembering the correct association. Note that during learning the activity of the output
neurons is determined by the appropriate pattern to be learned, NOT by calculating the
dot product of the input and weight vectors. The dot product is used only during the
second, recall or retrieval, phase, when the association is being remembered. (In the case
of the vector sum memory we considered before, we did not need to distinguish learning
and retrieval, because learning did not depend on postsynaptic activity). This procedure
will clearly allow learning and recall of all the elements of f and g, since our choice of
output neuron I1 was arbitrary. Furthermore, if we assume that a set of patterns f1, f2…..
etc (we could call this set of patterns {f}), are all orthogonal, we can learn all the
arbitrary associations f1-g1, f2-g2 etc (e.g. the faces and names of all our friends, or the
capitals of different countries).

Fig. 1. The linear associator. Input neurons J are all linked by synaptic weights w to all
the output neurons I. The weight between J1 and I1 is w 1,1, and generally the weight from
the jth cell to the ith cell is w i,j. The weights form a matrix W whose rows are the values
of the weights from the J cells onto a particular I cell (i.e. the rows are the different
weight vectors wi, and whose columns are the weights made by a particular J cell). Only

J1 J2 J3 J4 J5

 I1 I2 I3 I4 I5

w 1,1

2

weights from the first 2 J-cells are shown, but all the other J cells make weights on all the
I cells, and all the I cells receive weights from all the J cells. The output of Ii (i.e. gi) is
given by Σ wi,j

 fj (fj is the firing rate of the jth J cell; the sum is over all j values). The
output vector g is thus given by ΣΣ wi,j

 fj (the sums are first over the j index, and then
over the i index), which can be written as Wf (see text).

What happens if we try to store additional associations, for example f2 – g2, in the same
set of synaptic connections? If the patterns are orthogonal, i.e. very unlike each other, the
above argument still holds. This can be expressed a little more formally by invoking the
following (associative) rule for vector multiplication: a. (b.c) = (a.b).c which is the
vector analog of the ordinary rule a(bc) = (ab)c. (The operation in the parenthesis is
performed first). In the Hebb rule, the elements wi,j of the matrix W are formed by
multiplying the individual row and column vector elements gi and fj. We will use the
notation g for the row vector and fT for the column vector (T stands for “Transpose”, the
operation of making a row into a column, or vice versa), and we will use the notation fTg
to represent the dot product f.g, and the notation gfT (called the outer product of g and f)
to represent the matrix W.

W is formed by adding together all the weight changes produced by the set of
associations {f-g} in a learning phase. Thus W = ΣWk where Wk is the set of weight
changes produced by the kth association. Suppose we apply the input vector f1 to the
network in the retrieval phase. As usual, the output, which we will call g”is given by
Wf1. i.e.

g” = Σ Wk f1 ………………………Eq 1

all k

But ΣΣΣΣWk is composed of the sum of the weight changes, in the learning phase, due to f 1
plus all the other patterns where k was not 1. So

g” = W1f1 + ΣWk f1…………………..Eq 2

k not 1

We can write the second term on the right as

 Σ (g fk,T) f1 = Σ g (fk,T f1) = 0 …………………..Eq 3
k not 1 k not 1

since the dot product of f1 with any member of the set {f} other than f1 is zero if these
vectors are orthogonal. The term fk,T

(k not 1) refers to the (column) input vectors other than
f1.

It therefore follows that

3

g” = W1f1 ………………Eq 4

Now W1, the weight change due to pattern 1, is given by

W1 = g1 f1T ……………Eq 5

So g” = (g1 f1,T) f1 = g1 (f1,T f1) = g1…………….Eq 6

since, as before, we assume that all vectors have unit length. So we have proved that,
providing we learn orthogonal vectors of unit length, what we retrieve on inputting a
given vector is the learned associate of that vector. The argument is just a more elaborate
case of the vector sum memory argument we used before, but this time what results is not
a scalar estimate of familiarity, but the complete desired association. (If the vectors are
not of unit length, then the retrieved vector will not have the correct length, but it will
still point in the correct direction – so the pattern is remembered). Note that it is only
possible to store perfectly n pairs of associations (n is the number of input neurons),
because this is the maximum number of vectors that can be orthogonal to each other.

What happens if we input a pattern that the network has NOT learned? If the new pattern
is orthogonal to all the learned patterns, Eq 6 tells us that there will be zero output.
However, if the new pattern is not orthogonal to the learned patterns, it will generate an
output that is similar to the learned output corresponding to the input pattern which it
most closely resembles. However, as we discussed for the summed vector memory,
provided that the dimensionality is high enough, it works quite well for random patterns
(like phone numbers, and to a lesser extent names, addresses, and even faces). There is
evidence that some neural circuitry exists to make input patterns that are rather similar
more dissimilar, by removing “redundancy” – we will return to this concept. Such
preprocessing would help memorization.

We can look at the linear associator in action by converting readily-identifiable words
and phrases to vectors using a simple look-up table. In principle this involves writing A =
1, B= 2, C =3 etc. If we learn just the pair “Laurel - Hardy”, then we generate the
response “Hardy” to the input “Laurel”. Since the desired and actual outputs are identical,
the cosine of the angle between the corresponding vectors is 1.0. Unfortunately, in
response to a variety of novel inputs, we still get the output “Hardy” rather than “don’t
know”. It repeats the one thing it knows, like a demented parrot. But this is not a fair test
– after all, it was trained to remember not to recognize. But suppose it also learns several
other pairs, such as Beethoven-Mozart, Paris-France and “Bacon-Eggs”, we find it gives
the response “Mozart” to the prompt “Beethoven”, the response “France” to “Paris” and
“Egds” to “Bacon”. It makes mistakes, but performs reasonably (and the mistakes reflect
more inadequacies in the letter-number coding scheme rather than problems with the
memory device; the cosine of the angle between “Egds” and “Eggs” is still quite large.).
In response to the unlearned “Frank” it outputs “Parid” rather than the correct “Sinatra”;

4

it has not learned “Sinatra” so it gives roughly the output to the item it learned that most
resembled “Frank”.

So far we have considered the linear associator as a “heteroassociator” – learning
associations between different vectors f and g. The linear associator can also act as an
“autoassociator”, if it is taught the association “f –f”. This can be done by imposing the
same vector on both the input neurons and the output neurons during the learning phase.
At first glance this appears a bit pointless : why learn to respond “Hardy” to the prompt
“Hardy” ? However, because the linear associator comes up with the response that most
closely resembles a stored memory (“Parid” in the example above), it can retrieve whole
memories from fragments (the taste of the madeleine in Proust recalls the whole of
Combray). We can formalize this as follows. Consider a vector f composed of 2
orthogonal parts f’ and f” (i.e. f = f’ + f”). Consider a matrix W storing the
autoassociation f-f. Thus

W = ffT = (f’ + f”)(f’ + f”)T

If the fragment f’ is applied to the input (in a retrieval phase after learning”) the output g
will be given by

g = W f’ = (f’f’T + f’f”T + f”f’T + f”f”T) f’ = f’{f’T f’} + f’{f” T f’}+ f”{f’T f’} + f”{f”T f’}

where we grouped together terms that form inner products using brackets {}. The second
and fourth terms above contain inner products of orthogonal vectors, which are zero. So the
equation simplifies to

g = (f’+f”) (f’Tf’) = a f

Since (f’Tf’) is an inner product (i.e. just a number, a), we have shown that the retrieved
response g to the input fragment f’ lies in the same direction as the original memory f.

We can test this using phrases as random vectors. For example, the linear associator can
learn, autoassociatively, the phrases “London England”, “Paris France”, “Berlin Germany”
“Rome Italy” etc. When given the prompts “England”, “France”, “Germany” and “Italy” it
might respond “Longix Hnlans”, “Parid Fganle” etc. The reason it makes so many errors
are (1) the vectors are not perfectly orthogonal” and (2) there are problems with the
numerical encoding scheme. Nevertheless it is not completely wrong – it gets a C not an F.
There are at least three obvious ways to improve the performance of this autoassociator.

(1) When it makes mistakes, use the mistakes to improve the memories (to correct
some of the weights). This is known as supervised learning.

(2) Since the responses are more similar to the originals than are the prompting
fragments, use the rough first answers as new prompting fragments. The second
answers should be even more similar to the originals, and hopefully by repeating

5

this many times, one might converge to exactly the right answer. This involves
feedback.

(3) We could try to make it easier for the Linear Associator by imposing the condition
that input and output values can only take certain discrete values, for example 1 or
–1. We would then use a “majority” rule to convert the weighted sums at each
output neuron to either 1 or –1, as appropriate. Discretisation is a general method
for dealing with noise and error, because we know that nondiscrete (continuous or
intermediate-level) signals have to rounded up or down.

The Hopfield network we will consider next combines both of the latter strategies.

It is worth comparing this memory system to that of a computer. In the network, all n
memories are stored simultaneously in all the n2

 memory locations (the connections).
They are smeared out over the whole system, and a particular item of information (a
nose, or a letter of a name) is not found in a particular location. If some of these locations
are damaged, it will degrade all the memories to a similar extent, but if the damage is
slight the degradation will be slight. In the computer, each memory is located in a unique
set of labeled “locations”. For example, we could store each input-output pair at separate
locations, labeled 1-in, 1-out, 2-in, 2-out etc. Then given an input pattern the computer
could check through all the stored input patterns and determine the label, and then read
off the output pattern with the same label. Just like the associator the computer can store
n memories using n2 storage locations. The computer is not restricted to orthogonal
patterns, but it does require someone to write and store a program, and it is not
automatically autoassociative. If the computer memory is partially corrupted, it may
retrieve totally the wrong memory – it does not degrade “gracefully”. The most
significant difference is in style, not performance. The computer treats everything serially
– vectors are broken down to numbers, which are further broken down to binary digits.
This serial style means that all operations have to be extremely fast but exact, containing
eseentially no hardware errors. The network handles the whole vector at once, in a
parallel or distributed fashion, so no error can influence other simultaneous computations.
Individual computations (eg multiplying vector elements) can be slow and sloppy. This
makes it very fault tolerant. In a nutshell, computers use relatively small numbers of
precise components, and brains use vast numbers of imprecise components. Will a
computer ever exceed the performance of the human brain? For specialized tasks
(tictactoe, checkers and most recently chess) this has already happened (though the
computer programs that play these games were developed by humans; the brain is
selfprogramming). But across a range of tasks this still seems far off. The real problem is
that computers already operate close to limits set by physics (speed of light, Planck’s
constant, Avogadro’s number). Further large increases in chip densities will probably
make transistors work less precisely, forcing computers to become less serial and more
parallel.

It could be argued that in real learning situations, such as a child learning the names of
objects, the different names are not random, but follow clear rules – the rules of english
pronunciation (i.e. phonetics). However, although the sounds follow regularities (which

6

differ in different languages), the child is not actually associating sound with objects, but
sequences of phonemes with objects. The sequences of phonemes within words are fairly
random (for example, of the 25 possible words formed by placing one of the first 5
consonants on either side of the first vowel – bab, bac, bad etc – 14 are actual words,
including verbs, nouns and adjectives. Furthermore real words represent only a small
subset of possible words. The child also has to learn how to categorise sounds as
phonemes, but this requires a rather different approach than simple association. The brain
uses a variety of learning devices, including brute force association of random facts in the
way discussed in this lecture.
In a later lecture we will discuss the central problem of language: how can different
humans come to agree to use the same phoneme sequence – object associations, given
that the sounds that humans exchange do not infallibly identify phonemes?

A Note on Orthogonality of Binary Vectors.

In a binary vector each element can take only one of 2 values. If we take these values as 1
and –1, then the length of a vector is simply and conveniently the dimensionality of the
vector (i.e. the number of elements, n). In principle a polynucleotide string is a binary
vector (which we could represent 1,0,1,1, etc or equivalently 1,-1,1,1). A frequent
question in molecular biology is: how similar are 2 polynucleotide sequences? A
convenient way to measure the similarity is in terms of Hamming distance: the number of
basepairs that differ (call it d). The relationship between the Hamming distance between
2 binary vectors f and g and their dot product is d =(n-f.g)/2. Suppose that we compare 2
random strings. We would expect that if the strings are long enough, they would (by
chance) agree in half the positions, so the Hamming distance would be n/2. Now as
random vectors become infinitely long, they become increasingly orthogonal, with a
cosine between them of 0. This agrees with the given formula. Also, if the 2 random
vectors are identical d = 0 and by the formula d =(n – n cosθ)/2
 = 0 (since the lengths of the vectors are root n). If the 2 polynucleotides differ in every
position, they are complementary, and represent binary vectors that lie in the same
orientation.

	W is formed by adding together all the weight changes produced by the set of associations {f-g} in a learning phase. Thus W = ?Wk where Wk is the set of weight changes produced by the kth association. Suppose we apply the input vector f1 to the network i

