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It is proposed that vertebrate brains, especially those of mammals, operate according to an
algorithm subsumable as ‘‘synaptic Darwinism’’. The key postulate is that genes and synapses
follow the same rules, because they act as autocatalytic, hypercyclic, units of selection.
Synapses replicate by quantally strengthening, and mutate by connecting new cells. Because
synapses relate pre- and post-synaptic firing, they perform a translation operation.
Furthermore the product of this operation, conjoint firing, favors replication (by Hebb’s
Rule). The result is that variants are selected and patterns of connection automatically adopt
optimal configurations. These configurations are determined by scalar neuromodulatory
‘‘reward’’ signals applied globally to layers of neurons, which reduce spike frequency
adaptation and enhance Hebbian replication. Global or local control of mutation rates
provides further improvements in the Darwinian algorithm. All the processes and circuits
postulated have plausible, and often obvious, implementations. The result is that brains
evolve and adapt like large ecosystems.
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Introduction

Two of the most influential books in the history
of biology are Darwin’s On the Origin of Species
(1964) and Hebb’s The Organisation of Behavior
(1949). The books are famous because of the
simple but powerful ideas that they contain. In
this paper it will be argued that the key idea of
each book is essentially the same—hypercyclic
autocatalysis with selection of favorable vari-
ants. It is because this Hebb–Darwin algorithm
is so powerful that brains and species can
efficiently adapt to everchanging environments.

The unity of the Hebb–Darwin algorithm can
be illustrated most clearly in the modern
language of genes and synapses. Genes are the
fundamental unit of biology, and synapses of
neurobiology.

In each science there are important higher and
lower level entities (nucleotides, chromosomes,

genomes, populations, etc.; channels, neurons,
circuits, etc.) but genes and synapses are
fundamental because they are the units of
replication, mutation and selection. Carl Sagan
(1977) has pointed out that around 200 million
years ago the complexity of brains (roughly, the
information content of synapses) first exceeded
the complexity of genomes (roughly, the
information content of genes). At this point
synaptic adaptation became in a sense more
powerful than genetic adaptation. However
neither form of adaptation is universal: when
complexity exceeds some level, self-organisation
can no longer be maintained, and there can be no
further advance until some new, more efficient
implementation of the Darwinian algorithm is
implemented (such as language). Genes and
synapses are also fundamental in several other
more trivial senses. DNA is the most important
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constituent of the most prominent part of a cell,
the nucleus, and synapses are the most important
part of the most prominent constituent of the
brain, the neuropil. Genes and synapses are
currently the focus of the most rapid develop-
ments in biology and neurobiology, and recent
evidence shows that synapses are the basic
functional units of neuronal integration (Yuste &
Denk, 1995; Denk et al., 1995).

The framework proposed here centers on the
notion that genes and synapses are autocatalytic
units each subject to the same basic operations
of replication, mutation, translation, variation
and selection. As a result, brains and ecosystems
efficiently and continuously adapt to their
environment. This framework integrates a
number of disparate processes or structures in
neurobiology, such as details of synaptic
transmission and neuromodulation, thalamocor-
tical circuitry, and awareness and sleep. The
framework differs quite radically from that
proposed by Edelman (1987), where the units of
selection are neuronal groups, and repertoires of
variants are not continuously generated.

Selfish Genes and Selfish Synapses

The two essential operations that a gene
performs are (1) coding for another identical
gene (replication) and (2) coding for a protein
(translation; see Fig. 1). The essence of
Darwinism (‘‘Darwin’s Rule’’) is that the
encoded protein acts, directly or indirectly, as a
replicase for the gene that encodes it. In a
primitive hypothetical single-gene organism (to
which the Qb virus is an approximation;
Dawkins, 1986; Eigen, 1992) the gene encodes a
replicase (or other protein that is necessary for
replication) which, because of compartmentation
within a plasmamembrane, acts exclusively to
catalyse the replication of that particular gene
itself, and not other genes. Both the gene and the
protein replicate, and because each assists each
other’s replication, the arrangement is ‘‘hyper-
cyclic’’ (Eigen, 1992), and very efficient. Errors in
replication lead to replicase variants which may
be more or less efficient at catalysing the
replication of the encoding gene. As a result, a
population of organisms modifies its gene pool
composition to optimise overall replication

efficiency. ‘‘Adaptation’’ (or ‘‘survival of the
fittest’’) is this apparently purposeful optimis-
ation of the gene pool composition. However, as
Dawkins has emphasised, adaptation reflects the
selfish, or individual, behavior of genes following
a blind local rule that knows nothing about the
goal or direction of adaptation. Darwin’s
supreme insight was that this local algorithm
could generate structures of incredible appropri-
ateness and sophistication.

F. 1. Replication, Death and Mutation of Selection
Units. This figure has two interpretations. In one, the unit
is a gene: it can die, or it can duplicate itself. It also specifies
(i.e. translation: t) an autocatalytic protein X, which acts as
a replicase (a, arrow) or reduces (Q) the likelihood of the
gene disappearing (b; since this stabilises the gene, it also
enhances gene replication, acting indirectly as a replicase).
In the other interpretation, the unit is a synapse. Its
replication is enhanced by conjoint pre- and post-synaptic
activity (X; Hebb’s Rule), which is promoted (t) by the
presence of the synapse, since the presence of the synapse
enhances post-synaptic firing when the pre-synaptic cell fires
(see Fig. 2 and text). Conjoint activity diminishes the
probability that the synapse will disappear (b); however,
again this process is formally similar to the enhancement of
replication. The number of units grows or falls with a rate
constant w=(ar− bd), where r and d are the intrinsic
replication and death rates (in the absence of autocatalysis)
and a and b are the factors by which X multiplies the
intrinsic rates. In addition, units occasionally undergo
mutation, with probability k. Mutated units' encode slightly
altered products (X') which change replication and death
rates by small amounts a' and b'. Note that mutation is
bidirectional and can proceed to generate further variant
units0,1 etc. (not shown). Also note that the top and bottom
of the figure constitute separate, compartmented hypercy-
cles.
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How does Hebb’s Rule (synaptic strengthen-
ing by conjoint pre- and post-synaptic activity)
lead to the same algorithm? First, it is necessary
to define ‘‘synapse’’ a little more closely.
Synapses perform logical or storage operations.
Because the energies available in the rapid
operations of the brain (such as action
potentials) are only of the order of a few kT (the
thermal energy), single molecules cannot be used
to perform reliable logic or storage operations,
and clusters of molecules—synapses—are re-
quired. The exact nature and arrangement of
these molecules are not too important. For the
moment, let us consider only excitatory
synapses. An excitatory synapse has two key
features. The first is that it physically connects
two specific neurons, out of the very large
number of neurons that it could connect. The
second is that it relates the firing of the
pre-synaptic neuron to the probability of firing
of the post-synaptic neuron. In fact, we can
define the synapse ji as a connection which
increases the probability of firing of the i-th
neuron in a post-synaptic array of equivalent
neurons by an amount dq for a duration dt when
the j-th neuron in a pre-synaptic array of
equivalent neurons fires an action potential. If
we assume that all synapses have the same dq
and dt, we are essentially assuming a rather
strong form of quantal transmission (von
Kitzing et al., 1994). Each synapse would be
equivalent to a single release site, or to a unitary
patch of post-synaptic receptors, or whatever
turns out to be the basis of the ‘‘quantum’’
(Bekkers, 1994; Kuno, 1995). Although there is
much evidence that synaptic transmission is
quantal, the ideal synapse assumption made here
is only an approximation: quantal size does show
some variation, as a result of cable filtering,
vesicle size scatter, etc., and quanta are released
stochastically. However, neither of these devi-
ations is likely to be practically important for
Darwinian behavior, because the charge deliv-
ered to the soma by single quanta occurring at
different dendritic locations is roughly constant,
and the Hebb–Darwinian algorithm is itself
probabalistic. The definition given implies
linearity, since the amounts dq and dt are
assumed to be independent of the post-synaptic
firing level. This would be true if (uniquantal)

F. 2. Replication of Synapses. On the left, a synapse
couples the j-th cell (J) in the pre-synaptic array with the
i-th cell (I) in the post-synaptic array. A spike in J (row 1)
increases the probability of firing of I by an amount dq for
a time dt (row 3). This might induce a spike in I (row 2),
which can also fire at other times (spontaneously or as a
result of firing of other synapses). If spikes occur in both
J and I within the Hebb interval Dt, then replication occurs
with a probability Dp (right), i.e. the probability that a spike
in J induces a spike in I is enhanced by an amount dqdt (row
3), perhaps causing additional spikes in I leading to further
replication. Note that trace 3 corresponds roughly to the
duration of the AMPA component of the synaptic current,
and trace 4 to the duration of the NMDA component.

synapses are all very weak and/or the post-
synaptic cell is a leaky random walk integrator.
The first assumption is very likely true, because
uniquantal currents are in the pA range, far short
of typical nA rheobases. The second assumption
has been recently discussed (Shadlen & New-
some, 1994), and is considered further below.

Given this definition of an ideal excitatory
synapse, the synaptic equivalent of replication is
straightforward (Fig. 2). It corresponds to
strengthening. If a synapse becomes biquantal, it
has replicated. The new synapse is identical to
the old. It also connects the same j-th and i-th
neurons, and increases the post-synaptic firing
rate by the same amount dqdt in response to the
same pre-synaptic activity as does the ‘‘parent’’
synapse. The replication can be considered
semiconservative, in the sense that there is
no operational distinction between the
‘‘parent’’ and the two ‘‘offspring’’. The two
operations encoded by a gene (self-replication
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and production of a self-replicase) are also
encoded by a synapse, provided that synaptic
strengthening follows Hebb’s Rule. The ‘‘repli-
case’’ that allows replication of the synapse is
conjoint pre- and post-synaptic firing (of the j-th
and i-th neurons), and it is precisely this
‘‘replicase’’ that the synapse promotes. The
synapse ‘‘translates’’ the pre-synaptic activity
into the post-synaptic activity (using the
stochastic dqdt formula), and the conjoint
activity promotes replication, according to the
classic Hebb rule. To be more specific, the Hebb
rule is formulated as ‘‘whenever the pre- and
post-synaptic cell fire together (within an interval
Dt), then the synapse replicates (i.e. strengthens
by an amount dqdt) with a probability Dp’’. The
two basic intervals, dt and Dt, correspond
roughly to the durations of the AMPA and
NMDA components of the synaptic currents
respectively (e.g. Kuno, 1995).

It may be objected that Hebb’s Rule, as thus
formulated, is probabalistic, whereas Darwin’s
Rule is not. However, of course gene-based
Darwinian evolution is highly stochastic. A
particular organism has only a certain prob-
ability of replicating. Its genes may encode highly
efficient replicases, but nevertheless the vicissi-
tudes of life may extinguish it prematurely.

Autocatalytic replication of synapses is con-
strained by several factors, such as the presence
of adequate levels of pre- and post-synaptic
activity, and competition with other synapses
within the same ‘‘niche’’ (or post-synaptic
surface), for space, growth factors, etc. (Purves
& Lichtman, 1985). This engenders a struggle for
survival. In a case like a cerebellar Purkinje cell,
where two different types of synapse (contributed
by two different pre-synaptic arrays, the olivary
climbing fibers and the granule cell parallel
fibers) coexist, one must assume that they require
different pre- and post-synaptic resources. Each
synapse can be viewed as selfishly striving to
monopolise the activity of its post-synaptic cell.
Each synapse on a given post-synaptic cell which
originates from a given pre-synaptic cell is a copy
of itself. Thus each climbing fiber synapse is a
member of a large uniform clone (q102), while
each parallel fiber synapse is a member of
a large (q105) diverse population (Eccles et al,
1967).

Mutation, Variation and Selection

Hypercyclic replication must be imperfect for
adaptation to occur. Replication inaccuracies
(i.e. mutations) ensure a supply of variant genes
which replicate at different rates (assuming that
the replicase is a true catalyst, and influences a
rate limiting replication step). Let us assume that
sequence differences between variants can be
represented by a Hamming-like distance x,
which determine a replication rate w (defined in
Fig. 3) which is a function of x. The rate of
change of the number of units at a particular
value of x and t, (z), will be given by the sum of
a selection/growth term and a diffusion term:
1z1t=(w−w� ).z+ k 12z/1x2, where k is the
mutation rate and w� is the population average
net replication rate or ‘‘fitness’’ (Fig. 1;
Fisher–Eigen equation; Volkenstein, 1994). The
result is that the population, though remaining
constant in number, migrates to a local fitness
optimum (Fig. 3; see Ginzburg, 1983; Futuyma,
1986), roughly as a Gaussian cloud (Ebeling et
al., 1984).

Since the mutation rate is normally fixed, the
population at the local optimum (a ‘‘quasispe-
cies’’: Eigen, 1992) has an average fitness lower
than the fittest member of the population. If the
mutation rate is itself a genetically determined
character, then a population can further increase
its average fitness by selection of lower mutation
rate variants. However, if the position of the
fitness optima (with respect to the gene’s location
in sequence space) varies with time, selection will
increase mutation rates. Most variation in
sexually reproducing species is procured through
heterozygosity and recombination. Essentially,
non-lethal mutations are stockpiled in shielded
forms which, in a perfectly uniform, constant
environment, slightly lower average fitness.
However, the principle is essentially the same as
for asexual reproduction. To what extent levels
of mutation, dominance, recombination, etc. are
set by ‘‘group selection’’ mechanisms is a matter
of controversy, hingeing much on precise
definitions of ‘‘fitness’’ (see e.g. Eldridge, 1995).
Perhaps the simplest view is that all selection is
‘‘group’’ selection, with a group size of 1 being
a special, important case.
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F. 3. Individual and Ensemble Selection. The top curve
illustrates how the replication rate constant efficiency
w(= (ar− bd); ‘‘itness’’: fitness for genes or britness, for
synapses) of Xs encoded by different versions (alleles) of a
unit (see Fig. 1: X is replicase activity or conjoint firing; the
units are different versions, related by mutation, of a gene
or synapse; mutation distance is defined in the legend to Fig.
4) varies depending how much the unit differs from some
arbitrary starting value (– – –). The frequency distribution,
shown under the itness curve, shows the actual numbers of
the different versions of a unit after some arbitrary time,
relative to the starting distribution (all genes or synapses
identical), again as a function of mutation distance.
Individual Selection (left, smooth distribution): in the
absence of selection, mutation results in a gradual diffusive
broadening of the frequency distribution. However, since
the replication rate of a unit at a given distance from the
starting value is determined by the itness curve (i.e.
Darwinian selection occurs), the frequency distribution will
shift towards the peak of the itness curve, maintaining a
spread that depends on the mutation rate (i.e. the diffusion
constant) and the selection strength (i.e. the width and
height of the itness curve). This occurs because units with
higher itness (such as those shown shaded) multiply faster
than those with lower efficiency ( solid). Note that if the
total population does not grow as it migrates (normalisa-
tion), this corresponds to clamping the mean fitness (e.g. by
supplying some fixed rate-limiting resource) or the conjoint
rate (by inhibiting the entire post-synaptic array at a level
proportional to the average level of conjoint activity).
Ensemble Selection (right histogram): here the population
is smaller, so that temporal fluctuations in the position of
the population mean (arrows) are significant. If the
population fluctuates to the left (increase, shaded, in fitter
versions; decrease, solid, in less fit versions) a global reward
is delivered to the whole population to increase its
replication rate. The reward is proportional to the slope of
the itness curve between the old and new population means
(arrows). Note that a very simple itness curve is shown. In
reality, gene sequence space forms a hypercube (Eigen,
1992). The two-dimensional curve shown would arise if
replicase efficiency depended only on the fraction of bases
of one type in a binary gene, not their sequence. Also, real
fitness ( or britness) landscapes will show many peaks, and
trapping at local maxima can occur. It is assumed that real
landscapes can be approximated as sums and products of
Gaussians, so the process shown corresponds to migration
to local optima.

F. 4. Synaptic Mutation. Two alternative (but
equivalent) definitions of synaptic mutation. On the left, a
mutation of the ji synapse is formed by j onto a not-i cell
[in this case the neighboring (i+1)-th cell]. If the j-th
pre-synaptic cell synapses onto the (i+ x)-th cell, this is
considered to be a ‘‘larger’’ mutation. A mutation of the ji
synapse to form a j(i+ x) synapse is a Hamming-like
‘‘distance’’ x away from the original synapse. For example,
the synapse j(i+1) is unit distance away from the ji
synapse. For a gene, mutation distance can be defined
analogously, as the number of bases by which two genes
differ (Eigen, 1992; Volkenstein, 1995). In both cases
mutation as a function of x is modelled as a diffusion
process. On the right, an alternative , equivalent, definition
of mutation, not used in this paper, is shown.

but it is far too simple. Usually there are two or
more peaks (and many dimensions, see below).
However this does not affect the qualitative
behavior (see Ebeling et al., 1984 and below).

What are the synaptic equivalents of ‘‘mu-
tation’’ and ‘‘selection’’? Given the above
definitions of synapse, replication and trans-
lation, it follows that there are two possible
definitions of mutation (Fig. 4). Consider the
synapse ji. A mutation must be either a
connection from pre-synaptic cell j to a different
post-synaptic cell not-i, or a connection from a
different pre-synaptic cell not-j to the same
post-synaptic cell i. The behavior of the network
does not depend on the definition (because of
symmetry), but to be consistent we will choose
the first. As long as the projective fields
(Churchland & Sejnowski, 1989) of the i and not
i cells differ, synaptic mutation changes the
nature of the coupling between the pre-synaptic
neuron and the post-synaptic array, albeit (given
the weakness assumption), infinitesimally. If it is
assumed that the chances of a synaptic mutation
(an erroneous replication) are greater the closer
the ‘‘wrong’’ post-synaptic cell (i+ x) is to the
‘‘correct’’ post-synaptic cell (i) (Fig. 3), then the
Fisher–Eigen equation will describe synaptic
evolution. In this case w(x) is set by the conjoint
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firing rate of the j-th pre-synaptic cell and the
(i+ x)-th post-synaptic cell.

Consider a particularly simple pair of pre- and
post-synaptic arrays, containing one pre-synap-
tic neuron (A), and two post-synaptic neurons (0
and 1). Let us imagine the de novo birth of
‘‘mental life’’—the formation of the first synapse
(Fig. 5). Equivalently, we can imagine the
formation of the first single gene organism, a
gene which has only two alleles (0 and 1). Let us
suppose that these two alleles encode replicases
of different efficiency (in a particular, fixed,
environment). 1 is more efficient than 0. Whether
the first organism is a 0 or a 1, eventually 1s will
be far more numerous. The population of
organisms has adapted to the environment. It is
important to note that the direction of evolution
has been biassed by the assumption that allele 1
encodes a better replicase than allele 0 (within
the particular environment).

So far the evolution of our simple ideal
synapses is not biassed to one outcome or
another. They will simply grow at a rate
dependent on the average firing rates of the pre-
and post-synaptic neurons. (The post-synaptic
neurons are assumed to have random input from
other synapses outside the array pair, or
alternatively to show spontaneous random
firing). To bias the array to one outcome or
another, the outputs have to be compared to the
desired, or target outputs. The target outputs
essentially define a brain equivalent of fitness,
which can be called ‘‘britness’’. If a post-synaptic
neuron’s output falls short of the appropriate
target output, then synapses on to that neuron
from the pre-synaptic array (in the present case,
just the one pre-synaptic neuron) should
strengthen or replicate. This will boost the firing
of the post-synaptic cell, bringing it closer to the
target. Conversely, if the neuron’s output
exceeds the target, synapses on that neuron
should be weakened. We have not yet considered
synaptic weakening (long term depression). It
corresponds to death of individual organisms,
extinguishing that particular copy of the gene
(Fig. 1) . Death can simply be random—organ-
isms or synapses have a certain probability of
disappearing, which does not depend on their
information content. However, evolution is more
efficient if death does reflect inadequate adap-
tation, i.e. it is coupled probabilistically to a
particular gene sequence or connection pattern.
The signal that represents the difference between
the target britness output and the actual output
can be considered as a ‘‘reward’’. The reward can
be positive or negative. If the actual output
exactly matches the target output, the reward
signal is zero, since no change in the synaptic
strengths to that cell is required. Clearly the
effect of a positive reward signal must be to
increase the probability of synaptic replication.
It may be objected that since pre-synaptic firing
rates can vary over a wide range, there will be
many possible synaptic strengths that correctly
match the various input levels to the desired
output. This is related to the notorious dilemma
in neurophysiology, the relationship of spatial
and temporal codes (e.g. Groh & Sparks, 1992)
. Obviously, the nervous system has solved this
dilemma. The dilemma, and the objection,

F. 5. Individual Selection of Synapses. This shows the
evolution of a very simple array pair. The single
pre-synaptic neuron A can connect either to post-synaptic
cell 0 or to cell 1. The bars below show the firing rate of
the post-synaptic cells in the two cases (open: actual; filled:
ideal). If A connects to 0 then firing of 0 is more likely than
firing of 1. Since the observed firing of 0 is slightly less than
the target, the selection signal (or britness, i.e. the value read
off the efficiency curve in Fig. 3) should be small and
negative (Q). Conversely, since the firing of 1 is much less
than the target, a strong positive selection signal is applied
(arrow). The selection signals, or rewards, measure how far
the array is from the target synaptotype. If A connects to
cell 1, then the firing rate of 0 will be lessened, and the firing
of 1 increased, resulting in appropriately modified selection
signals. Note that if the observed output matches the ideal,
selection signals are zero and the synaptotype is stable
(corresponding to the peak of the britness curve in part A:
note that in this case since there are only two versions of
the synapse—A0 and A1—the britness curve in this case has
only two values, and is not continuous.)
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largely evaporate if the firing rate of a cell
represents the probability that the feature it
represents is present (Gnadt & Breznen, 1996),
and if features are coarsely coded, with
approximately Gaussian receptive or projective
fields. This is closely related to Poggio’s (1990;
Poggio & Girosi, 1993) argument that the brain
uses radial basis functions to exploit the
‘‘smoothness’’, or redundancy, of the world, and
the proposed mechanism, retaining random
changes that reduce the error, is similar to his
proposed learning method. As noted above, the
Fisher–Eigen equation is usually written so as to
clamp the total population number. For similar
reasons, strong global inhibition should be
added to a post-synaptic array, to clamp the
average coincidence rate (and thus the total
number of synapses). These inhibitory neurons
should measure the average amount of pre-
synaptic–post-synaptic coincidence, and subtract
this signal from the post-synaptic array. This can
be accomplished if each post-synaptic axon
makes a feedforward connection on the distal
dendrites of the coincidence detecting inter-
neuron, and each post-synaptic cell makes a
recurrent connection on its proximal dendrites.
Under these conditions synaptic evolution will
result in rearrangement rather than growth of
connections.

So far our description of Darwinian synaptic
evolution matches the classic ‘‘perceptron learn-
ing rule’’, and our array is a simple linear
‘‘perceptron’’. This learning rule is well known to
be Hebbian in spirit (Hertz et al., 1991) and it
essentially underlies more sophisticated pro-
cedures such as backpropagation (Minsky &
Papert, 1988). However the analogy to Dar-
winian evolution has not often been stressed. A
single-gened asexually reproducing organism can
adapt to any arbitrary one-dimensional fitness
landscape, where each local optimum represents
a different niche occupied by a different race
(within the physical constraints set by the
gene-replicase system), provided that the gene
can adopt a continuum of states that map onto
fitness. In the absence of sex the distinction
between race and species is blurred. Normally, of
course, gene sequence space is high-dimensional,
but the number of possible values along each
dimension is quite small, and it is still reasonable

F. 6. Complex Landscapes. (a) shows one particular
possible synaptic matrix or synaptotype (out of an
astronomical possible number; see text). This synaptotype
maps the vector representing the pre-synaptic activities of
the array pair (row 1) onto the vector representing the
post-synaptic activities (row 2). A tiny change (e.g. the
mutated synapse shown as solid) slightly varies this vector
mapping. If this improves the array output, the global
reward system (dotted line) fires. The conjunction of a Hebb
Rule and a global reward signal ensures that, in the long
run, the mutated synapse will preferentially replicate. (b)
shows a contour plot of fitness (or britness) where diffusion
along two separate x–y distance axes confers varying
degrees of fitness (the vertical axis). In the example shown,
there is a simple ridge (– – –) connecting a local optimum
a to a global optimum b. Darwinian selection (individual or
group) promotes migration along this ridge, since the
downward fitness gradient is least here. However, in order
to explore the ridge the population (shown in gray) has to
have a high enough mutation/selection ratio to reach the col
(at c). This inevitably lowers the average fitness; (c) shows
schematically a more realistic situation (with many genes or
synapses, and strong epistatic or nonlinear interactions).
Many steep ridges (– – –) lead away from a local fitness
peak; however only one leads to a better optimum. Other
things being equal, this ridge descends less steeply than the
others, and it can thus be found using a local rule (such as
topographic layer VI feedback control of mutation rate).

to map fitness in low-dimensional space,
provided that it is remembered that there are far
more ‘‘ridges’’ connecting fitness peaks than can
be shown in a two-dimensional map (Fig. 6). As
neurons are added to the post-synaptic array, the
set of possible ‘‘alleles’’ increases, as does the set
of possible britnesses that the array pair can
learn (Fig. 6). Likewise a simple perceptron can
solve the large class of problems known as
‘‘linearly separable’’, although it may take a long
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time to do so. The similarity to perceptrons will
become clearer when we consider multigene
evolution.

Array Evolution

Single gene organisms do not exist, nor do
single celled arrays (except perhaps in invert-
ebrates, where connections are more likely to be
specified genetically than by learning). Early in
evolution single-gened organisms fused because
genes can cooperate to enhance their own
replication. Of course an inefficient gene that
finds itself on the same chromosome or in the
same genome as a highly efficient gene can hitch
a ride (‘‘linkage disequilibrium’’), although not
for ever. This dilutes the efficiency of the
Darwinian algorithm, but this is largely offset by
the widened possibilities of cooperation. Let us
discuss ‘‘cooperation’’. If two one-gened organ-
isms fuse, it could be that each encoded replicase
continues to act only upon its own encoding
gene. Such an organism would have no
advantage over its progenitors. However, each
replicase might also be able to copy the other
gene. The redundancy of such an arrangement
would be useful, because each replicase could
now vary to match not just the gene but also the
availability of other essential ingredients. Fur-
thermore, two different replicases, each perhaps
separately suboptimal compared to the replicases
of single-gened organisms, might come together
as subunits of a superreplicase.

Consider now the equivalent situation in
‘‘Synaptic Darwinism’’. A neuron is added to the
pre-synaptic array, which can also form synapses
on either post-synaptic cell. Given our previous
definitions, the synapses formed by this cell
cannot be considered as either replicas or
mutants of the original synapses. These synapses
are not alleles or replicas of each other, and we
thus have an informationally new synapse. We
can call all the synapses formed by the first cell
A synapses and all the synapses formed by the
second cell B synapses, and synapses formed by
the j-th cell, J synapses. If all the synapses
formed by the A cell are on post-synaptic
neurons 0-k, and those formed by the B cell are
all on post-synaptic neurons i–z, then we have
the equivalent of two one-gened species. If the

two pre-synaptic neurons can synapse on any
post-synaptic cell we have the equivalent of one
two-gened species. Since this is often the case, the
entire array pair can be considered to be the
equivalent of a single species (or an isolated
population thereof). An individual post-synaptic
cell is similar to an individual organism and its
progeny (though synapses can die individually,
whereas genes in an individual genome die
collectively).

The 2×2 array can learn the simplest possible
discrimination—to associate activity in cell A
with activity in 1 or 2 or both, and to associate
activity in B with 1 or 2 or both. To learn this
the target britnesses for each mapping have to be
provided. As is well known, it cannot (and no
simple perceptron can) learn to be inactive (1
and/or 2) when both A and B are active if it is
active when either A or B are active—the
exclusive OR. m× n arrays can however learn
quite complex tasks. They can learn to recognise
unique combinations of their inputs, just as
multigened organisms can adapt to utilise
substrates that single gened organisms cannot
use. This is a particularly strong form of
cooperation, and requires that the strengthening
produced by conjoint firing of cell j and i should
be much greater than the sum of the strengthen-
ing produced by their separate firing. This is
achieved by replacing the simple linear leaky
integrator firing mechanism with a nonlinear,
usually sigmoidal relation (Hertz et al., 1991). It
corresponds to the phenomenon of epistasis in
genetics (Futuyma, 1986), where the contri-
bution of genes to fitness is not additive, but
depends on each other. If each gene contributes
additively to fitness, then in principle the fitness
contributed by each gene can be optimised
separately, and if the fitness landscape for each
gene is separately defined, so is the landscape for
the ensemble (see also Poggio & Girosi, 1993).
However if n genes interact, then the overall
fitness landscape is of higher dimension.

What happens when an arbitrary starting
synaptotype is placed in a complex britness
landscape? The population initially diffuses into
a Gaussian cloud that migrates to the local
britness optimum. It then migrates coherently to
nearby britness peaks along connecting ridges
(Eigen, 1992; Volkenstein, 1994). However,
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rather remarkably, this migration is invisible if
the population is large—it essentially pseudo-
quantum-mechanically ‘‘tunnels’’ or ‘‘catwalks’’
instantaneously to the new peak (Lande, 1985;
Ebeling et al., 1988)! The evolutionary equival-
ent is ‘‘punctuated equilibrium’’ (Eldridge,
1995).

Suppose that each post-synaptic cell in an
m× n array pair receives p synapses. The
number of possible different combinations of
connection is [(m+ p)!/m!p!]n, which even for
small values of m,n and p becomes superastro-
nomical (and even larger if there is a maximum
of p synapses). Of course the weakness
assumption means that many similar configur-
ations have similar average britness. However
the britness landscape is sufficiently rich that a
perceptron, especially a nonlinear one, can solve
many problems. Because the britness landscape
is less correlated for nonlinear perceptrons
(corresponding to a high degree of epistasis), the
danger of getting stranded on false optima is
increased, something called by geneticists the
‘‘complexity-catastrophe’’ (Kaufmann, 1993).
Possible strategies that the brain may use to
overcome stranding are considered below.

Individual and Ensemble Selection

So far it has been assumed that the desired or
target activity of each output neuron is known
for each task. If this were the case, there would
not be much point in training the array
pair—one could just use the known targets as
templates. This ideal situation is rather like
artificial selection, where a breeder can examine
each individual for conformity with some target,
and correspondingly adjust its probability of
reproduction (Perfect Artificial Individual Selec-
tion; PAIS). However the brain does not have
this luxury. Its quandary resembles that of a
breeder who wants to grow a strain of red
bacteria, but cannot isolate individuals, or even
colonies. The best he can do is to take a small
rapidly mutating culture and measure its redness
from time to time. It will fluctuate around some
mean value (Fig. 3). Whenever its redness
slightly exceeds this mean value, he briefly
rewards it with extra substrate, leading to a small
growth spurt. This procedure is repeated

whenever the colony turns slightly redder than
the previous best recorded value. In order to
keep the colony at constant size, it is punished
whenever the redness drops by briefly withhold-
ing substrate. Inevitably the colony will gradu-
ally become redder (provided of course that
redness is accessible within its protein sequence
space). The point is that the reward does not
have to be restricted to those individual mutants
that are redder on average. It can be shared
equally between all members of the colony.
Spontaneous fluctuations in the average position
of the colony along the artificial redness
coordinate can be selected just as individual
outliers at the leading edge of the population are
selected under normal Darwinian evolution
(Fig. 3). This can be seen more clearly when it is
realised that this is just the temporal equivalent
of the selection of different ensembles. If a large
number of bacterial colonies were grown up,
then one could just choose the reddest for further
growth. It does not matter whether the
fluctuations are temporal or spatial, as long as
the memory of the fluctuation is preserved and
amplified. We can refer to this procedure as
Differential Artificial Ensemble Selection
(DAES). Note that the breeder does not know,
or care, whether the colony fluctuations toward
redness were caused by an excess of redder
mutations, or a chance increase in replication by
redder organisms. DAES is closely related to
Wright’s (1982; see also Lenski & Travisano,
1994) ‘‘shifting balance’’ model, where ensemble
selection acts on finite populations whose means
are fluctuating. DAES reduces to PAIS when the
population size is one.

This argument is at first sight somewhat
surprising because the redness of bacteria in the
model does not influence the fitness of individual
bacteria. However, it does influence the fitness of
the entire colony. Consider an ensemble of small
colonies that all start out equally pink. Some of
these colonies will, by chance, die. The colonies
that, by chance, become redder are less likely to
die than ones that become, by chance, less red.
Thus over time the entire collection of surviving
colonies will become redder. Of course, if the
colonies are allowed to grow too much,
fluctuations will become negligible, and DAES
will fail.
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So to train an array pair without using specific
target values for each neuron, one needs to
provide a global reward signal that increases
synapse replication across the entire post-synap-
tic array whenever the array’s output moves
closer to the desired goal, essentially the local
slope of the britness curve (Fig. 3). Normally, of
course, an animal’s brain measures its entire
error, which is how far the animal is currently
from its goal. This error measurement is itself
quite a sophisticated operation, perhaps per-
formed by the limbic system (Damasio, 1995).
However, it is in principle much simpler than
estimating how far each neuron in an array is
from its best output—a scalar rather than a
vector. In fact, a binary reward signal will often
be adequate. The implementation of replication,
mutation and reward is considered in the next
section.

In summary, an array pair maps the
pre-synaptic vector (the pattern of pre-synaptic
firing, corresponding to the input to the array
pair) onto the post-synaptic vector (the pattern
of post-synaptic firing). The mapping is influ-
enced by the pattern of synaptic connections
within the pair (the synaptotype) and the
nonlinearity of the post-synaptic neuron. The
latter is assumed to be the same for all neurons,
and influenced by a multiplicative scaling factor
proportional to a ‘‘reward’’ signal. Mutation
within the array pair changes the vector
mapping; mutations that improve the array
performance are rewarded. In addition, ‘‘punish-
ment’’ signals can reduce the post-synaptic gain
factor, which coupled with random synapse
death eliminates bad synapses. DAES is closely
related to the Associative Reward Penalty
scheme (ARP) advocated by Barto (1990).

Implementation

Mutation ultimately represents the formation
of new physical connections, presumably by
initially random growth of pre-synaptic neurites
within the array (Antonini & Stryker, 1993;
O’Rourke et al., 1994), as well as dendritic
expansion (Ziv & Smith, 1996; Dailey & Smith,
1996). However neurite growth is a rather slow
process, typically 1 mm per day, and is unlikely
to generate the constant rapid mutation that is

necessary for most learning. Therefore I suggest
that growth to establish new physical connec-
tions mostly occurs ‘‘off-line’’, during sleep
(Horne, 1988; Karni et al., 1994). This phase
could be called ‘‘pre-mutation’’. Pre-mutation
itself is presumably under genetic, hormonal and
neuromodulatory control. The new physical
connections are almost complete synapses, but
lack an essential component. This component is
very likely spine head NMDA receptors. If an
array is performing satisfactorily, then no
mutation or replication is immediately needed
(though, because of mutation when other tasks
are being solved, some array updating will be
required). The pre-mutant synapses can be held
in reserve for future use (reducing the need for
subsequent nights’ sleep). However if errors
consistently occur, a neuromodulatory system is
activated that increases the rate of insertion of
post-synaptic NMDA receptors (Rs). A related
situation for genes is the evolution of high
mutation rates for antibodies or bacteria
(Sniegowski et al., 1996). Synapses where
NMDARs have been recently inserted but which
so far lack AMPARs are known as ‘‘silent
synapses’’ (Liao et al., 1995; Isaac et al., 1996).
An attractive candidate for this role is the
activation of metabotropic glutamate receptors
located on the distal dendrites of cortical and
thalamic neurons (Godwin et al., 1995, 1996).
mGLUR activation is known to enhance
NMDAR responses (Bleakman et al., 1992;
O’Connor et al., 1993; Kinney & Slater, 1993;
Bortoletto et al., 1994). If, after a brief spurt of
mutation, error is lessened, the newly recruited
synapses replicate. In many systems, especially
those closest to output and input, mutation at
high rates only occurs during critical periods,
when the overall patterns of synaptic circuitry
are being laid down. Minor ongoing mutation
keeps refining circuitry to account for ongoing
cell death. Such ongoing rearrangement is well
documented in sensory cortex (Wong et al.,
1995; Darian-Smith & Gilbert, 1994). However,
arrays that compute more abstract stimulus
features, or that formulate plans, continue to
show mutation in adult life, until dendrites
eventually become clogged up with synapses.
Such deep arrays are probably much more
‘‘isomutational’’ (that is, individual neurons
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have access to every member of the post-synaptic
array) than superficial arrays, both because of
higher mutation rates, and because they are more
compact.

Conjoint pre- and post-synaptic activity
causes insertion of AMPARs into the spine head
of recently mutated synapses (Isaac et al., 1996).
The change from n=1 to n=2 constitutes
synaptic replication. The initial change from
n=0 (silent) to n=1 can be considered as the
zeroth replication. It is subject to the same Hebb
rule as subsequent replications. The insertion of
a dollop of AMPA receptors increases the
effective strength of the synapse from n=0 to
n=1. Further conjoint firing may add more
dollops of AMPA receptor. Further replication
can increase n to 3 or 4, but AMPAR insertion
could only occur for a few cycles before
structural pre- and post-synaptic elaboration
becomes necessary. This may correspond to the
process of perforation and splitting described by
Geneisman et al. (1993), and may also occur
off-line during sleep. The newly formed synapses
(with n=0 or 1) would have the same
connectivity as their parent, except for rare
mutations. Silent synapses that fail to achieve
this step might eventually be subject to NMDAR
removal during sleep; some disassembly of
pre-mutated synapses may also occur. However,
under normal conditions conjoint activity is
rather rare, because (a) both feedforward and
feedback inhibition is very strong (Traub &
Miles, 1991); (b) somadendritic potassium
currents ensure rapid and powerful spike
adaptation (e.g. Madison & Nicoll, 1986;
Adams, 1987); and (c) action potentials gener-
ated in the axon hillock region do not efficiently
back propagate into dendrites because of a
combination of (a) and (b); Stuart & Sakmann,
1994; Markram et al., 1995; Jaffe et al., 1992;
Spruston et al., 1995). I refer to this condition as
‘‘Hebb-locked’’. Most neurons are in the
Hebb-locked state, otherwise the brain would
rapidly explode with synapses, just as an
exponentially growing bacterial culture will soon
overflow an incubator. However, if a mutation
spurt favorably, though slightly, changes the
array pair synaptotype, and hence its vector
mapping, a brief reward signal temporarily
disengages the Hebb lock, and synapses replicate

(Fig. 7). Alternation of brief episodes of
mutation and replication will produce conver-
gence on a solution (not necessarily a globally
optimal one).

There is in fact much evidence that neuromod-
ulatory reward systems, releasing acetylcholine,
noradrenaline, serotonin and dopamine, have
the required properties. They globally innervate
the telencephalon (Robbins & Everitt, 1995).
They appear to be activated during the reward
phase of learning, though not simply in response
to the reward (Schultz et al., 1993). Indeed they
appear to have exactly the desired feature—they
require the combination of an actual reward
(which defines the desired direction of change)
and some measure of the task performance error.
If either the reward is absent or the error is zero,
the dopamine neurons do not fire (Schultz et al.,
1993). Finally, and most persuasively, these
reward systems do seem to specifically disable
the Hebb lock (Madison & Nicoll, 1986, 1988;
Malenka & Nicoll, 1986; Andrade & Nicoll,
1987). These neuromodulators reduce transmit-
ter release from inhibitory neurons and reduce
the size of potassium currents, especially those

F. 7. The Triangle of Awareness. The sketches show a
cell’s response to a short train of synaptic input. A cortical
neuron can be in three different states: (a) depolarised, tonic
but adapting (‘‘aware’’ but Hebb-locked); (c) depolarised,
tonic but non-adapting (‘‘aware’’ but Hebb unlocked); (b)
hyperpolarised and bursting (unaware). The ground state is
(b); maintained depolarisation (e.g. via the metabotropic
GluR) inactivates T-current and brings the neuron to (a);
release of cholinergic and/or aminergic neuromodulators
brings the cell to state (c). Note that in both states (c) and
(b) the input–output gain is high; however, close spacing of
action potentials in (b) is unfavorable for Hebb strengthen-
ing, because the burst precedes the main phase of NMDA
receptor activation. In state (a), input–output gain is low,
also unfavorable for Hebb strengthening. Reward pushes
the aware cell to (c), punishment to (a).
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involved in spike frequency adaptation and
dendritic backpropagation.

A synaptotype which produces minimal error
(maximum average britness) in a stable environ-
ment can be maintained by two alternate
strategies: (1) ongoing intense selection, replica-
tion, death and mutation or (2) slowing or
cessation of replication, death and mutation. The
former is the bacterial strategy, the latter the
metazoan. Obviously the former cannot main-
tain the synaptotype when the environment
changes or disappears. A simple way to switch
off replication, death and mutation is to convert
synapses to a change-resistant state. A short-
term way to do this would be to switch the
pre-synaptic cells from tonic firing to burst firing
(see below). In the longer term synapses might be
consolidated to a less plastic physical form. This
process could be called post-mutation. Post-mu-
tation itself may involve various increasingly
stable states (DeZazzo & Tully, 1995). Indeed,
any memory mechanism is likely to involve a
continuum of stability levels, since the more
stable the memory the more energetic (and
slower) the ‘‘write’’ process must be.

Catastrophes

The most difficult problem faced by any
Darwinian system is the double catastrophe
posed by complexity. As the number of units
expands, the replication signal provided to the
individual genotype (PAIS) or the evolving
group (DAES) is diluted at the level of the
individual units of selection, especially when
fitnesses are merely additive. Selection is unable
to hold complex genotypes at a local fitness
optimum, and the population undergoes a
phase-transition to much lower average fitness:
the Eigen ‘‘error catastrophe’’ (Kaufmann, 1993;
Volkenstein, 1995). The only simple solution to
this problem, (other than restricting the number
of units), is to increase epistasis, or in the
synaptic case, to increase the nonlinearity of the
post-synaptic transfer function. However, as
already noted, this in turn increases the
dimensionality of the fitness landscape, greatly
increasing the number of local, but false, optima.
Such an array pair can wander endlessly in an
astronomically rich synaptic labyrinth without

ever encountering the global optimum. However,
there are two possible solutions to this problem.

Mental Life

The first solution, advocated by Kaufmann
(1993), is to maintain the evolving population at
the error threshold. Actually, this is a sort of
special biological case of ‘‘simulated annealing’’,
which in turn is connected to a fact about the
world that provides a second solution—it
exhibits regularity. Thus the fitness landscape
(though high-dimensional) is somewhat corre-
lated, and in particular fitness peaks tend to
cluster in ranges or massifs. World correlations
or regularities imply redundancy. The best
search strategy therefore is to locate ranges at
low resolution, and then refine within the range
at finer grain. The Darwinian interpretation is
straightforward—‘‘melt’’ the population over the
entire landscape by greatly increasing the
mutation rate, until it finds the coarsest
orographical features, and then gradually ‘‘cool’’
the population by lowering the mutation rate to
find progressively finer, and higher, features
within the landscape. Of course in both biology
and neurobiology one cannot completely melt
the population because some minimal level of
fitness (basically the replacement level) must be
maintained. However during active array evol-
ution one should maintain the mutation rate as
close to the error catastrophe threshold as
possible. Fortunately, in ‘‘synaptic Darwinism’’,
continuous control of the global mutation rate
(via a metabotropic receptor like the mGluR) is
easy. Viruses also seem to operate at the error
threshold (Eigen, 1992; Volkenstein, 1994).

The synaptotypic space of a large array pair is
so vast that even at the error threshold
convergence to the current britness optimum is
unlikely. However, because of world redun-
dancy, it may be necessary to mutate only part
of the array pair. For example, following a small
retinal lesion it is necessary to only rewire a small
thalamic or cortical area centered on the lesion
location. One of the roles of the massive
topographic corticocortical and corticothalamic
feedback projections is probably to control the
effective local mutation rate, by releasing
glutamate onto mGLURs located on distal
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F. 8. The Basic Cortical Operation (– – –) shows the
level of the spiny stellate cells (layer IV) which relay afferent
information (from either first order or higher order thalamic
relay nuclei; Sherman & Guillery, 1996) to the dendrites of
supragranular (SG) cells (mainly Layers II/III). This
pre-conditioning step is omitted, so that afferents are shown
as synapsing directly on SG neurons. SG cells act as a
hidden layer, extracting features of the input vector, and
sending them to higher cortical areas (as afferents).
Feedback to this cortical field from higher fields is of two
types. Layer VI feedback controls the mutation rate in SG
cells by activating mGLURs on apical dendrites (hatched).
Layer V feedback (and possibly SG feedback) is compared
to the output of SG cells (after sign inversion) in layer VI
cells, which compute an error vector representing the
difference between the features extracted in this field and
that proposed by higher fields (the ‘‘guess’’, ‘‘interpret-
ation’’ or ‘‘expected feature’’). This error vector is sent back
to the distal dendrites of lower order SG or thalamic relay
cells, where it in turn controls the local mutation rate, and
hence allows adjustment of feature extraction. Recent
evidence indicates that distal (apical) dendrites form a
special physiological zone (Yuste et al., 1994). Note,
extensive lateral connections omitted! Layer V provides
output to the rest of the brain, including second order
thalamic nuclei (Sherman & Guillery, 1996). Some layer VI
cells may compute an error vector based on the mismatch
between afferent inputs and the layer V output.

ridges lead downwards from local false optima.
Use of an error vector to control melting
effectively steers the evolving population along
the least steeply descending ridges, the most
efficient local search strategy in an extremely
rugged terrain. This must have been one of the
key innovations that allowed mammals to
become intelligent (see also Shimizu & Karten,
1993). Note that local control of mutation rate
and of ‘‘awareness’’, procured by an mGLuR-
like device, operate efficiently in tandem.
Feedback control of the local mutation rate is
unlikely to be 1:1 because at least in the
thalamus feedback axons greatly exceed feedfor-
ward axons (Sherman & Guillery, 1996). An
efficient arrangement would be to have topo-
graphic control of mutation rate over variable
sized patches of thalamus or cortex, with the
largest layer VI cells innervating the largest
patches, and the smallest cells innervating single
neurons or even individual dendrites. Recruit-
ment would follow a size principle (Henneman et
al., 1965). It is also possible that layer VI
feedback provides a local reward signal, enhanc-
ing replication rather than mutation. It is known
that mGluR activation inhibits adaptation-pro-
moting potassium currents (Pedarzani & Storm,
1996). Such a local reward would promote
individual, rather than group, selection. Further-
more, local feedback control of both mutation
and selection could act in tandem. The pattern of
these feedback connections would itself be
established by Hebbian mechanisms.

The second type of solution to the error-com-
plexity catastrophe also explores ranges before
individual peaks. The solution is to actively
cluster into ranges (i.e. to generalise or abstract)
by using hierarchies of arrays, again exploiting
the regularity of the world .A simple example is
the clustering of units that represent purely
topographic information to represent orientation
(Das, 1996). Of course, this only works if the
world indeed contains bars and edges. The
ultimate aim is to cluster the whole world into
two broad supermassifs, to measure the relative
average heights, and to take a binary decision
based on that measure. The entire space of vision
is almost infinitely rich (despite the world’s
considerable redundancy) and because of the

dendrites (Godwin et al., 1995, 1996; Zhou et al.,
1994). This would depolarise the target cells,
and, at least in the case of the thalamus, the
resulting tonic type of activity would result in a
higher effective mutation rate (to a maximum set
by developmental and hormonal regulation). It is
likely that layer VI cells, the main origin of the
backprojection, compute a local error signal
which is used to control mutation rates
topographically in lower order arrays (Fig. 8). If
the britness landscape is high-dimensional, many
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error catastrophe each array can only do a
limited amount of clustering.

Array hierarchies as described are just
multilayer neural networks. It has been pointed
out that synaptic Darwinism, in its DAES form,
is akin to ARP, whereas in its PAIS form it is like
the perceptron learning rule. Therefore, since the
perceptron rule generalised to multilayer net-
works is backpropagation, it is not surprising
that ARP performs equivalently (Mazzoni et al.,
1991). Note that there is nothing in the
definitions proposed which prevents a post-
synaptic array from being its own pre-synaptic
array—an autoassociative, rather than feedfor-
ward, network. Furthermore, a post-synaptic
array can be the target of several separate
pre-synaptic arrays, though there should be some
mechanism for applying rewards selectively
within such overlapping array pairs.

Neuromodulatory reward systems fire pro-
portionately to how much closer a recent
mutation episode has brought an array hierarchy
to errorless task performance, so disabling the
Hebb lock and allowing replication. Any real
brain has thousands of arrays, and no conver-
gence will occur if mutation occurs simul-
taneously in all, or many, of them—it would be
like changing a thousand variables at one in a
complex experiment. How is mutation and
selection to be confined to a few arrays so that
the problem space can be intelligently explored?
There must be something like an attentional
mechanism, which puts a few arrays into a
susceptible, ‘‘aware’’, state. Attention is an
inevitable attribute of Darwinian evolution in a
multiarray system.

Recent work in thalamus has revealed the
probable mechanism for the attentional spotlight
(Sherman & Koch, 1996). What should such a
mechanism do? In the unaware state, neurons
should be relatively quiescent or hyperpolarised.
However they should be able to respond
vigorously if a particularly clear signal arrives
(high reliability). Furthermore, when so respond-
ing the response must (a) contain a signature so
that downstream neurons can appropriately
classify the information as coming from an
‘‘unaware’’ neuron; (b) need not encode every
(appropriately transformed) detail of their input,
since that information is not being directly used

to evaluate the all-important error function;
finally (c) the unaware neuron should show
strong spike frequency adaptation, so that
Hebbian replication is not engaged. All these
features are characteristic of the ‘‘burst’’ or low
threshold spike mode of thalamic relay cells
(Jahnsen & Llinas, 1984; Scharfman et al., 1990;
Sherman & Koch, 1996). In ‘‘tonic’’ mode, in
contrast, neurons are depolarised, and their
spike activity accurately encodes stimulus par-
ameters (Guido et al., 1995). Furthermore, those
distal cortical feedback synapses which were
proposed above to enhance mutation also shift
cells from burst to tonic mode (McCormick &
von Krosigk, 1992; Godwin et al., 1996). This
purely electrical change may be the main
short-term control of the effective mutation rate.
Thalamic cells do not show strong spike
frequency adaptation in tonic mode, probably
because in the adult there is little thalamic
plasticity, and thus little need for a Hebb lock.
However, cortical pyramidal cells show both
spike frequency adaptation and T-current. These
cells seem to exist in three basic modes: burst,
tonic adapting (Hebb-locked) and tonic un-
locked (Fig. 7). Recent in vivo recording shows
that these three basic modes occur, though to
what extent they are freely interconvertible is as
yet unclear (Gray & McCormick, 1996 ). It is
also possible that cortical cells are placed in
‘‘aware’’ or ‘‘unaware’’ mode not by intrinsic
mechanisms, but by the pattern of their thalamic
inputs (tonic or burst).

The suggested basic cortical operation is
shown in Fig. 8 (cf. the ‘‘canonical cortical
circuit’’ of Douglas & Martin, 1990). Layer IV is
considered to be a modified version of Layers
II/III, which pre-conditions lower order input
and transfers it to Layers II/III. These function
as a ‘‘hidden layer’’ and feed forward to both
higher cortical areas and to layer V, the output
layer. It is important that all cortex has an
output layer, because selection guided by
output-driven errors becomes progressively
weaker the deeper the selected layer lies to
output (a similar problem exists in ‘‘bucket-
brigade’’ classifier systems in computer science
(Holland, 1992). Weights in the hidden and
output layers are optimised by the Hebb–Darwin
reward algorithm, on the basis of rewards
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calculated by the limbic system from the current
and previous outputs, and the goal, and applied
by the aminergic diffuse modulatory systems.
Outputs from II/III and V are fed forward to
higher level arrays for extraction of higher order
features. They are also compared (probably after
sign reversal) in layer VI neurons with layer V
feedback from higher levels, which constitutes a
sort of ‘‘guess’’ about what is ‘‘actually out
there’’. If the guess is locally inconsistent with
what layer II/III actually reports, local error
signals are sent back to lower order arrays,
especially the thalamus, to initiate further
mutation. The system thus automatically com-
pares input signals, and a cascade of progress-
ively more abstract extracted features, with
previous interpretations of the world. If no
consistent interpretation is possible, mutation is
automatically initiated and tested to optimise
feature extraction. Learning and development
would be essentially the same process, though
occurring in different epochs at different levels.
Also, feature extraction and interpretation
would be essentially the same process, at
different levels of abstractness. Often, especially
in non-humans, the system stops at a level of
abstraction that generates behavior consistent
with some biologically Darwinian goal.

Fetal Development and Sleep

How can useful connections be made or
maintained while feedback from the environ-
ment is absent, during fetal life or sleep? If the
world is redundant, then topographic mapping,
which can be done in the absence of detailed
feedback, can be a useful general principle. Such
mapping means that neighboring neurons in a
pre-synaptic array (whose activity, because of
Gaussian receptive and projective fields, tends to
be correlated) should project most strongly to
neighboring cells in the post-synaptic array,
provided that other correlations (provided by
reward signals) are absent. It is well known that
a simple Hebb principle promotes such corre-
lations and neighborhood mappings (Cline,
1991; Peretto, 1992). Obviously, a sine wave
pattern of activity sweeping across the pre-
synaptic array will provide the optimal combi-
nation of high local correlation and modulation

depth. If the topographic mapping is to be
accurate in two dimensions, these travelling
waves should occur along random directions.
These features seem to account for retinotectal
and retinothalamic mappings (Meister et al.,
1991; Wong et al., 1993; Wong, 1993; Wong &
Oakley, 1996). Similar travelling waves of
thalamic origin occur in slow wave sleep (Kim et
al., 1995). They might be involved in maintaining
topographic mappings which would otherwise
degrade during sleep.

A topographic mapping is most obviously
useful as a ‘‘map’’ of the external world, which
contains coherent objects. However, it can also
provide a way of organising any set of extracted
features (such as tone). Furthermore, the simple
Hebbian generation of locally topographic
mappings, in the absence of selection, may also
underlie the generation of arrays that extract
more abstract features. Consider the model
suggested by von der Malsburg (1972) for
orientation selectivity. This essentially uses real
input ‘‘bars’’ to generate, via a Hebbian
mechanism, cells that are tuned to bars.
However, cortical cells show orientation selectiv-
ity before the animal experiences any coherent
visual input (Chapman et al., 1996). There are
two possible, bizarre, solutions to this enigma.
The first is that the appropriate wiring is
somehow genetically specified. The second is that
the brain creates virtual oriented travelling bars
or stripes. Consider what would happen if
regular travelling waves originate (presumably
thalamically) at several points simultaneously.
Their regular collision will create interference
patterns, which will resemble slowly moving or
stationary slightly curved fringes. These fringes,
though virtual, will create local domains of
orientation selectivity.

Thalamic travelling waves, from single or
multiple origins, will not just topographically
program sensory and motor maps (movement
maps are really just the output equivalent of
sensory bars), but the entire ‘‘association’’
cortex. However, to be useful, the basic structure
imposed by simple non-selective Hebbian map-
ping has to be sculpted by detailed experience. It
seems possible that mental ‘‘universals’’ reflect
the combination of spatially correlated spon-
taneous activity, and the genetically-determined
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T 1.
Rules for genetic and synaptic Darwinism

Genes Rules Synapses

Unique nucleotide sequence 1. Information Unique connection

Crick–Watson base pairing 2. Replication Synaptic strengthening (LTP)

Disappearance of a copy of a gene 3. Death Synaptic weakening (LTD)

Gene sequences specifies protein 4. Translation A synapse specifies an input/output relation

The fate of certain genes are 5. Bundling All neurons within an array receive same
interdependent (e.g. organisms) neuromodulatory signals

Genotype specifies phenotype 6. Execution Input vector specifies output vector

Erroneous replication leads to 7. Mutation Neurite growth leads to new connections
altered sequence

Slightly altered genotype leads to 8. Variation Slightly altered synaptotype leads to
slightly altered phenotype slightly altered output vector

Darwin’s Rule: 9. Selection Modified Hebb Rule:
‘‘Survival of the Fittest’’ ‘‘Survival of the Brittest’’

developmental sequence of successive temporal
waves of heightened mutation. Of course array
pairs exposed to a real, redundant world, will,
because Hebb synapses are correlation detectors,
also generate useful mappings, such as coordi-
nate transformations (Mazzoni et al., 1991;
Salinas & Abbott, 1995), in the absence of
spontaneous waves or biassing rewards.

Conclusion

Synapses and genes are both information-rich
autocatalytic hypercyclic units that program
complex behavior of the ‘‘bundles’’ of which they
form part. The ‘‘bundle’’ is an association of
units on which selection acts in tandem. The
most important bundles are, for genes, the
individual, and for synapses, the array pair,
although selection can act at the ensemble
(population or race) level, and at the individual
(neuron) level. Selection acts to maximise the
fitness (or britness) of the individual and/or
group (and is weighted by the inverse of the
group size; Williams, 1996). Synapses undergo
operations like replication, translation, mu-
tation, variation and selection (Table 1). These
operations have straightforward neural im-
plementations. Particularly important is the
selection operation, which occurs by the

conjunction of mechanisms operating at the
single synapse (Hebb’s Rule) and whole array
(global neuromodulatory aminergic reward)
levels.

Synaptic mutation is likely to occur by growth
of new connections during sleep (premutation)
and rapid insertion of NMDA receptors to
create silent synapses (mutation proper). Repli-
cation (including the zeroth replication) is likely
to occur by rapid (1 s), AMPAR insertion or
disclosure (though early pre-synaptic changes are
possible), followed by a type of consolidation
involving pre- and post-synaptic elaboration and
splitting. While the brain is disconnected from
the real world during fetal development or sleep,
yet synapse pre-mutation, consolidation and
elimination is still occurring, accidental mutation
and replication can degrade mappings set up in
the awake state. Mappings can be maintained, or
created, by travelling waves, which may interfere
to create moving bar-like patterns.

Multiple hierarchical arrays, which extract
progressively more abstract features, coevolve
and compete. Most arrays are in a non-evolving
‘‘sketch’’ mode corresponding to ‘‘burst’’ firing;
arrays which are actively evolving are in a
detailed, ‘‘tonic’’, ‘‘aware’’, firing mode, upon
which selective, global neuromodulatory reward
systems can act whenever the animal moves
closer to some ‘‘goal’’. Burst mode arrays are still



   435

capable of automatically performing already
learned tasks, but cannot immediately modify
themselves to meet unexpected contingencies.

The basic cortical module corresponds to a
stochastic two layer backpropagation network
(Mazzoni et al., 1991). However, the compu-
tations of the hidden layer (II/III) are compared
to feedback signals from higher order arrays, and
an error vector computed in layer VI. This is
returned to the distal dendrites of preceding
cortical layer II/III cells, or thalamic relay cells,
where it locally increases the mutation rate by
switching cells to tonic mode. The system
automatically extracts and tunes parallel hier-
archies of abstract features, and updates feature
analysis to incorporate novelty (cf. Logothetis et
al., 1995).

Considerable skepticism about ‘‘neural Dar-
winism’’ (Edelman, 1987) exists (Crick, 1989;
Purves et al., 1996). However, the present
formulation, which may be dubbed ‘‘synaptic
Darwinism’’, seems to be free of many otherwise
objectionable features. The unit of selection has
been defined, and operations with units, such as
replication, translation, mutation and selection,
have been shown to correspond to broadly-un-
derstood brain processes. Because synapses are
so abundant, and because they operate and
rewire quite rapidly, synaptic evolution is likely
to be much more efficient than evolution based
on neuronal groups and selection from reper-
toires laid down during early development, and
a fortiori than gene-based evolution. A great
many brain processes and structures, such as
neuromodulation, adaptation, bursting, electri-
cal waves, sleep and thalamacortical circuitry,
receive plausible interpretations. Furthermore,
theoretical tools like Hebb’s Rule, backpropaga-
tion and ARP blend harmoniously with a
Darwinian viewpoint. Perhaps the most attrac-
tive aspect of synaptic Darwinism is its close
linkage between emergent phenomena in biology
and neurobiology, without invoking unrealistic
mechanisms. The key feature is amplification of
microscopic fluctuations by autocatalysis, to
produce dissipative macroscopic structures
which are stabilised by selection to exploit the
redundancy of the world.

Is the approach outlined above truly
Darwinian? Here it is useful to distinguish

between the units of selection and the level of
selection (Williams, 1992). Clearly the unit of
selection is that entity which undergoes imper-
fectly accurate autocatalytic replication—the
gene or the synapse. Selection is then applied in
tandem to collections of units, or bundles.
Single-gened organisms or linear array pairs with
only one pre-synaptic neuron constitute minimal
bundles. The largest possible gene bundle is the
entire world biota, and the largest synaptic
bundle, the brain itself. Darwinian selection is
based on fluctuations in the composition of an
ensemble of bundles. In the usual, biological,
case, these fluctuations are spatial—at any one
time part of the ensemble is fitter than other
parts, and replicates faster. In the case of the
brain, it is suggested that these fluctuations are
temporal—the ensemble may be fitter at one time
rather than another, again replicating faster.
However, because replication and mutation are
asynchronous, this difference is more apparent
than real. Even in conventional natural selection,
fluctuations are essentially compared to the
mean of the ensemble. If they are fitter, they are
amplified. Although the comparison is syn-
chronic, the mean reflects the previously attained
population mean, since replication ‘‘memorises’’
the composition of the gene pool, and is thus also
diachronic. And in both cases, selection is based
on the regularity of the world. Darwinian
gene-based evolution creates the objects studied
by biologists, and synapse-based evolution those
studied by neurobiologists. It is because synapses
are much more nimble and numerous than genes
that mental adaptation is so much faster than
physical adaptation.

Although the framework proposed here starts
from biological considerations, it is quite similar
in essence to that implicit in neural networks
theories. The present framework places emphasis
on Darwinian evolution as a fitness maximisa-
tion algorithm, while network theory uses
analogies to statistical mechanics to stress that
Hebbian learning is an energy minimisation
procedure (Hertz et al., 1991; Peretto, 1992). It
is hoped that because more biologists are
familiar with evolution theory than with
statistical mechanics, the approach sketched here
will be illuminating.
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Note Added in Proof

Experimental evidence for synaptic replication
has been recently reported by Petersen et al.
[Peterse, C. C. H., Malenka, R. C., Nicoll, R. A.
& Hopfield, J. J. (1998). All-or-none potentiation
at CA3-CA1 synapses. Proc. Nat. Acad. Sci.
U.S.A. 95, 4732–4737].

I thank Don O’Malley, Lev Ginzburg, George
Williams, Paul Bingham and, especially, Kingsley
Cox for help, discussion and advice. I thank SUNY,
Stony Brook for granting me sabbatical leave during
which the idea for this paper was conceived.

REFERENCES
A, P. R. (1987). Cholinergic hypothesis of Alzheimer’s

disease: biophysical aspects. In: Molecular Neurobiology
in Neurology & Psychiatry (Kandel, E., ed.), N.Y.: Raven
Press.

A & N (1982).
A, R. & N, R. A. (1987). Pharmacologically

distinct actions of serotonin on single pyramidal neurones
of the rat hippocampus recorded in vitro. J. Physiol. 394,
99–124.

A, A & S, M. P. (1993). Rapid remodeling of
axonal arbors in the visual cortex. Science 260,
1819–1821.

B, A. (1990). From chemotaxis to cooperativity:
abstract exercises in neuronal learning strategies. In: The
computing neuron (Durbin, R. M., Miall, R. C. &
Mitchison, G. J., eds), pp. 73–98. New York: Addison-
Wesley.

B, J. M. (1994). Quantal analysis of synaptic
transmission in the central nervous system. Curr Opin.
Biol. 4, 360–365.

B, D., R, K. I., C, P. S., G, S. R. &
M, R. J. (1992). Metabotropic glutamate receptors
potentiate ionotropic glutamate responses in the rat
dorsal horn. Mol. Pharmacol. 42, 192–196.

B, Z. A., B, Z. I., D, C. H. &
C, G. L. (1994). A molecular switch
activated by metabotropic glutamate receptors regulates
induction of long-term potentiation. Nature 368,
740–743.

C, B., S, M. P. & B, T. (1996).
Development of orientation preference maps in ferret
primary visual cortex. J. Neurosci. 16, 6443–6453.

C, P. S. & S, T. J. (1989). Neural
Representation and neural computation. In: Neural
Connections, Neural Computation. (Nadel, L., Cooper, L.
A., Cullicover, P. & Harnish, R. M., eds). Cambridge,
MA: MIT Press.

C, H. T. (1991). Activity-dependent plasticity in the
visual systems of frogs and fish. Trends. Neurosci. 14,
104–111.

C, F. H. C. (1989). Neural Edelmanism. Trends
Neurosci. 12, 240–248.

D, M. E. & S, S. J. (1996). The dynamics of
dendritic structure in developing hippocampal slices. J.
Neurosci. 16, 2983–2994.

D, A. R. (1995). Descartes’ Error. New York:
Putnam.

D-S, C. & G, C. D. (1994). Axonal
sprouting accompanies functional reorganisation in adult
cat striate cortex. Nature 368, 737–740.

D, C. (1964). On the Origin of Species. (Facsimile
Edition). Cambridge, MA: Harvard University Press.

D, A. (1996). Orientation in visual cortex: a simple
mechanism emerges. Neuron 16, 477–480.

D, R. (1986). The Blind Watchmaker. New York:
OUP.

D, W., S, M. & L, R. (1995). Two types of
calcium response limited to single spines in cerebellar
Purkinje cells. Proc. Nat. Acad. Sci. 92, 8279–8282.

DZ, J. & T, T. (1995). Dissection of memory
formation: from behavioral pharmacology to molecular
genetics. Trends in Neurosciences 18, 212–218.

D, R. J. & M, K. A. C. (1990). Neocortex. In:
The Synaptic Organisation of the Brain (Shepherd, G. M.,
ed.), New York: OUP.

E, W., E, A., E, B. & F, R. (1984).
Diffusion and reaction in random media and models of
evolution processes. J. Stat. Phys. 37, 369–384.

E, J. C., I, M. & S, J. (1967). The
Cerebellum as a Neuronal Machine. New York:
Springer-Verlag.

E, N. (1995). Reinventing Darwin. New York:
Wiley.

E, G. M. (1987). Neural Darwinism. London: Basic
Books.

E, M. (1992). Steps Toward Life. London: OUP.
F, D. (1986). Evolutionary Biology. Sunderland,

MA: Sinauer.
G, Y., T-M, L., M, F.,

H, R. E., R, M. & P, R. F. (1993).
Structural synaptic correlate of long-term potentiation:
formation of axospinous synapses with multiple,
completely partitioned transmission zones. Hippocampus
3, 435–446.

G, L. R. (1983). Theory of Natural Selection and
Population Growth. Menlo Park: Benjamin Cummings.

G, J. W. & B, B. (1996). Statistical analysis of
the information content in the activity of cortical
neurons. Vision Res. 36, 3525–3537.

G,D.W.,VH, S.C.,G,A.E., S,M.
A., R, C. & S, S. M. (1995). Localisation of
two metabotropic glutamate receptors ( mGluR1a and
mGluR5) in cat LGN. Soc. Neurosci. Abstr. 21, 658.

G, D. W., V, J. W. & S, S. M. (1996).
Metabotropic glutamate receptors switch visual response
mode of lateral geniculate nucleus cells from burst to
tonic. J. Neurophysiol. 76, 1800–1816.

G, C. M. & MC, D. A. (1996). Chattering cells:
superficial pyramidal neurons contributing to the
generation of synchronous oscillations in the visual
cortex. Science 274, 10–19.

G, J. M. & S, D. L. (1992). Two models for
transforming auditory signals from head-centered to
eye-centered coordinates. Biological Cybernetics 67,
291–302.

G, W., L, S. M., V, J. W., G, D. W. &
S, S. M. (1995). Receiver operating characteristic
(ROC) analysis of neurons in the cat’s lateral geniculate
nucleus during tonic and burst response mode. Vis.
Neurosci. 12, 723–741.



   437

H, D. O. (1949). The Organization of Behavior. New
York: Wiley.

H, E., S, C. & C, D. O. (1965).
Functional significance of cell size in spinal motorneu-
rons. J. Physiol. 28, 560–580.

H, J., K, A. & P, R. G. (1991). Introduction
to the Theory of Neural Computation. Redwood City:
Addison-Wesley.

H, J. H. (1992). Adaptation in Natural and Artificial
Systems. Cambridge, MA: MIT Press.

H, J. A. (1988). Why We Sleep. Oxford: Oxford
University Press.

I, J. T., H, G. O., N, R. A. & M,
R. C. (1996) Long-term potentiation at single fiber inputs
to hippocampal CA1 pyramidal cells. Proc. Nat. Acad.
Sci. 93, 8710–8715.

J, D. B., J, D., L-R, N., L, J. E.,
M, H. & R, W. N. (1992). The spread of Na+

spikes determines the pattern of dendritic Ca2+ entry into
hippocampal neurons. Nature 357, 244–246.

J, H. & L, R. (1984). Electrophysiological
properties of guinea-pig thalamic neurones: an in vitro
study. J. Physiol. 349, 205–226.

K, A., T, D., R, B. S., A, J. J. M.
& S, D. (1994). Dependence on REM sleep of
overnight improvement of a perceptual skill. Science 265,
679–682.

K, S. (1993). The Origins of Order. New York:
Oxford University Press.

K,U.,B, T.&MC,D.A. (1995). Spindle waves
are propagating synchronised oscillations in the ferret
LGNd in vitro. J. Neurophysiol. 74, 1301–1323.

K, G. A. & S, N. T. (1993). Potentiation of
NMDA receptor-mediated transmission in turtle cerebel-
lar granule cells by activation of metabotropic glutamate
receptors. J. Neurophysiol. 69, 585–594.

K, E. , J, P. & S, B. (1994). Quantal
analysis of excitatory postsynaptic currents at the
hippocampal mossy-fiber-CA3 pyramidal cell synapse.
Adv. Second Messenger & Phosphoprotein Res. 29,
235–260.

K, M. (1995). The Synapse: Function, Plasticity and
Neurotrophism. Oxford: OUP.

L, R. (1985). Expected time for random genetic drift
of a population between stable phenotypic states. Proc.
Nat. Acad. Sci. 91, 6608–6814.

L, R. E. & T, M. (1994) Dynamics of
adaptation and diversification: a 10 000-generation
experiment with bacterial populations. Proc. Nat. Acad.
Sci. 91, 6808–6814.

L, D., H, N. A. & M, R. (1995). Activation
of postsynaptically silent synapses during pairing-in-
duced LTP in CA1 region of hippocampal slice. Nature
375, 400–404.

L, N. K., P, J. & P, T. (1995). Shape
representation in the inferior temporal cortex of
monkeys. Current Biol. 5, 552–563.

M, D. V. & N, R. A. (1986). Actions of
noradrenaline recorded intracellularly in rat hippocampal
CA1 pyramidal neurones in vitro. J. Physiol. 372,
221–244.

M, D. V. & N, R. A. (1988). Norepinephrine
decreases synaptic inhibition in the rat hippocampus.
Brain Res. 442, 131–138.

M, R. C. & N, R. A. (1986). Dopamine
decreases the calcium-activated afterhyperpolarisation in
hippocampal CA1 pyramidal cells. Brain Res. 379,
210–215.

M, C.   (1972). Self-organisation of
orientation sensitive cells in the striate cortex. Kybernetik
14, 85–100.

M, H., H, P. J. & S, B. (1995). Dendritic
calcium transients evoked by single back-propagating
action potentials in rat neocortical pyramidal neurons. J.
Physiol. 485, 1–20.

M, P, A, R. A. & J, M. I. (1991). A
more biologically plausible learning rule for neural
networks. Proc. Nat. Acad. Sci. 88, 4433–4437.

MC, D.A.&K,M.. (1992). Corticotha-
lamic activation modulates thalamic firing through
glutamate ‘‘metabotropic’’ receptors. Proc. Nat. Acad.
Sci. 89, 2774–2778.

M, M., W, R. O. L., B, D. A. & S, C. J.
(1991). Synchronous bursts of action potentials in
ganglion cells of the developing mammalian retina.
Science 252, 939–943.

M, M. L. & P, S. A. (1988). Perceptrons.
Cambridge, MA: MIT Press.

O’C, J. J., R, M. J. & A, R. (1993).
Long-lasting enhancement of NMDA receptor mediated
synaptic transmission by metabotropic glutamate recep-
tor activation. Nature 367, 557–559.

O’R, N. A., C, H. T. & F, S. E. (1994).
Rapid remodeling of retinal; arbors in the tectum with
and without blockade of synaptic transmission. Neuron
12, 921–934.

P, P. & S, J. F. (1996). Evidence that
Ca/calmodulin-dependent protein kinase mediates the
modulation of the Ca2+-dependent K+ current, IAHP, by
acetylcholine, but not by glutamate, in hippocampal
neurons. Pflugers Archiv. 431, 723–728.

P, P. (1992). An Introduction to the Modeling of
Neural Networks. Cambridge: Cambridge University
Press.

P, T. (1990). A theory of how the brain might work.
Cold Spring Harbor Symposia on Quantitative Biology,
LV. pp. 899–910. New York: CSHL Press.

P, T. & G, F. (1993). Learning algorithms and
network architectures. In: Exploring Brain Functions:
Models in Neuroscience. (Poggio, T. A. & Glaser, D.A.,
eds), pp. 77–96. Chichester: Wiley.

P, D. & L, J. W. (1985). Principles of Neural
Development. Sunderland, MA: Sinauer.

P, D., W, L. E. & R, D. R. (1996). Is neural
development darwinian?. TINS 19, 460–464.

R, T.W.&E, B. J. (1995). Arousal systems and
attention. In: The Cognitive Neurosciences. (Gazzaniga,
M. S., ed.). Cambridge, MA: MIT Press.

S, C. (1977). The Dragons of Eden. NY: Random
House.

S, E. & A, L. F. (1995) Transfer of coded
information from sensory to motor networks. J.
Neurosci. 15, 6461–6474.

S, H. E., L, S. M., G, W., A, P. R. &
S, S. M. (1990). N-methyl-Daspartate (NMDA)
receptors contribute to excitatory postsynaptic potentials
of cat lateral geniculate neurons recorded in thalamic
slices. Proc. Natl Acad. Sci. USA 87, 4548–4552.



. 438

S, W., A, P. & L, T. (1993).
Responses of monkey dopamine neurons to reward
and conditioned stimuli during successive steps of
learning a delayed response task. J. Neurosci. 13,
900–913.

S, M. N. & N, W. T. (1994). Noise, neural
codes and cortical organisation. Curr. Opin. Neurobiol. 4,
569–579.

S, S. M. & G, S. M. (1996). Functional
organisation of thalamocortical relays. J. Neurophysiol.
76, 1367–1395.

S, S. M. & K, C. (1996). Thalamus. In: The
Synaptic Organisation of the Brain (Shepherd, G.M., ed.).
Oxford.

S, T.&K,H. J. (1993). The avian visual system
and the evolution of the neocortex. In: Vision, Brain and
Behavior in Birds. (Zeigler, H. P. & Bischof, H.-J., eds).
Cambridge, MA: MIT Press.

S, P. D., G, P. J. & L, R. E. (1997).
Evolution of high mutation rates in experimental
populations of E. coli. Nature 387, 703–705.

S, N., S, Y., S, G. & S, B.
(1995). Activity-dependent action potential invasion and
calcium influx into hippocampal CA1 dendrites. Science
268, 297–300.

S, G. J. & S, B. (1994). Active propagation of
somatic action potentials into neocortical pyramidal cell
dendrites. Nature 367, 69–72.

T, R. D. & M, R. (1991). Neuronal Networks of the
Hippocampus. Cambridge: Cambridge University Press.

V, M. V. (1994). Physical Approaches to
Biological Evolution. Berlin: Springer-Verlag.

W, X., M, M. M., S, K. & J,
W. M. (1995). Remodelling of hand representation in

adult cortex determined by timing of tactile stimulation.
Nature 378, 71–75.

W, G. C. (1992). Natural Selection: Domains, Levels
and Challenges. New York: Oxford University Press.

W, G. C. (1996). Adaptation and Natural Selection.
Princeton: Princeton University Press.

W, R. O. L. (1993). The role of spatio-temporal firing
patterns in neuronal development of sensory systems.
Curr. Opin. Neurobiol. 3, 595–601.

W, R. O. L. &O, D.M. (1996). Changing patterns
of spontaneous bursting activity of On and Off retinal
ganglion cells during development. Neuron 16, 1087–
1095.

W, R. O. L., M, M. & S, C. (1993). Transient
period of correlated bursting activity during development
of the mammalian retina. J. Neurosci. 15, 2696–2706.

W, S. (1982). Character change, speciation and the
higher taxa. Evolution 36, 427–443.

Y, R. & D, W. (1995). Dendritic spines as basic
functional units of neuronal integration. Nature 375,
682–684.

Y, R., G, M. J., S, D., D, K. R. &
T, D. W. (1994). Ca2+ accumulations in dendrites of
neocortical pyramidal neurons: an apical band and
evidence for two functional compartments. Neuron 13,
23–43.

Z, Q., G, D. W., B, M. E., S, S.
M. & A, P. R. (1994). Relay cells and local
GABAergic cells contribute to responses mediated by
metabotropic glutamate receptors in cat LGN. Soc.
Neurosci. Abstr. 20, 133.

Z, N. E. & S, S. J. (1996). Evidence for a role of
dendritic filopodia in synaptogenesis and spine for-
mation. Neuron 17, 91–102.


