Appendix 1 — Stability

We calculate the Jacobian matrix D fy, for a fixed vector w:
Lemma 0.1. Dfy =1+ [C —2w(Cw)" — (w/ Cw)I]
Proof. Call g(w) = (w/'Cw)w , so f(w) =w +v(Cw — g(w))

gi(w) = (WTCW)IUZ
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D, (w) = aw, Z Criwgw)w; + ; Criwgw; = 2( Z Criwg)wi+
+wlCw = 2[Cw];w; + w! Cw
So:

Dgw = 2w(Cw)T + (wl Cw)I
O
Take now an orthonormal basis B of eigenvectors of C ( with respect to the Euclidean

norm || - || on R™). Fix a vector w € B. Pick any v € B,v # w. Call Ay and A, their
corresponding eigenvalues.

Dfy(v) = v+4~[Cv—2w(Cw)lv — (wlCw)v] =
v+ 7[Cv — 2ww! Cv — (wl Cw)w| =
= v+vy[Av— 2wwl A, v — Aww] = (1 —7[Aw — Av])V

Dfy(w) = w+[Cw—2w(Cw)'w — (w/ Cw)] =
W+ Y AwW — 2Wwwl AW — Ayw| =
= w+y[2\|W[w] = [1 — 29A\w]W

So B is also a basis of eigenvectors for D f.

Our next goal is to generalize this argument for an iteration function that includes
errors. The new model introduces an error matrix, E € M,,(R) that has positive entries, is
symmetric and equal to the identity matrix I € M,,(R) in case the error is zero. Moreover,
we assume that EC has strictly positive maximal eigenvalue of multiplicity one.

fE(w) =w + y[ECw — (WTCW)W]

Note that the symmetric, positive definite matrix C € M,,(R) defines a dot product in
R"™ as:



(v,w)c =vICw

If v and w are eigenvectors of EC corresponding to the eigenvalues Ay # Ay, then they are
orthogonal with respect to the dot product (,)c. Indeed:

ECv =)\,v = (W,ECv)c = A\ (W,V)c
ECw = \yw = (v,ECw)c = Ay (V,W)C

Hence Ay (v,W)c = Aw(V,W)c. As Ay # Ay, it follows that (v,w)c = 0, hence v and w
are orthogonal with respect to the given dot product.

A fixed point for f® is a vector w = (w;...w,)T such that ECw = (w/Cw)w. In
other words, w is fixed by f¥ if and only if it is an eigenvector of EC (with corresponding
eigenvalue Ay, ), normalized such that | w [[c= Aw. Clearly, this is possible if and only if
Aw > 0.

ECw = \yw, [Ww]|c=\w

If the multiplicity of Ay, is one, then w is orthogonal in (, )¢ to all other eigenvectors of EC.
Recall that

DfE =14 4[EC - 2w(Cw)T — (wI Cw)I]

Take w to be a fixed point of fE. w will hence be an eigenvector of EC, with eigenvalue
Aw = (WI'Cw)w > 0. Calculate:

DfEw = w+AECw —2w(Cw)Tw — (wl Cw)w] =
= w+y[2ww! Cw| = [1 — 29 \w]W

DfEv = v4AECV —2ww!Cv — \yv] =
= v+ = Aw)v = 2(w, v)cw] = (1 = 7[Aw — AV])v

for any other eigenvector v of EC with eigenvalue Ay # A\y:

As in the error free case, DfE has all eigenvalues less than one in absolute value if and
only if Ay is the principal eigenvalue of EC and v < ﬁ

To complete our mathematical discussion, we argue that the condition on EC to have
a unique maximal eigenvalue (i.e. a principal eigenspace of dimension one) is not unrealis-
tically strict, and that EC has this property generically often. We will prove a somewhat
stronger result. We start by assuming, without loss of genericity, that C has distinct eigen-
values A\ > Ao > ... > A, > 0. We will show that, via some assumptions which are also
generically true, EC has also distinct eigenvalues.

Q ¢ €
E=| € Q ' =(Q —e)I+ ] = (1 —ne)I + [
€ e Q



where [€] is the n x n matrix with all entries e. We take 0 < e < 1/n (i.e., positive error e
smaller than the trivial value). We want to see what conditions need to be met in order to
have a unique maximal eigenvalue for the modified covariance matrix EC.

Since C is symmetric and positive semidefinite, there exists an orthogonal matrix P
(ie., PPT = PTP = I), so that PCP? = D, where D is a diagonal matrix. Without
loosing genericity, we can assume that P is such that the sum of the entries along each of
its rows is nonzero.

Under there assumptions, we can proceed to calculate the eigenvalues of PECPT, since
these will be the same as the eigenvalues of EC. (Indeed, if v is an eigenvector of with
eigenvalue y, then PTv is an eigenvector of EC, and conversely.) To do this, we first
simplify the form of PECP”, then calculate its characteristic polynomial:

pECP? = PEPTPCP? = ((1 —ne)l+ P[e]PT> D

For each j = 1,n, we call r; = X}_py; the sum of the entries on the j-th row of P. With
this notation:
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where a = L, for 0 <e<1/n.
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The eigenvalues of PECPT (which are also the eigenvalues of EC are proportional to the

1
roots of the polynomial P(z) = det <1—PECPT - l‘I):
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We want to calculate P();), for all the distinct eigenvalues A; of C. We describe the
computation for A, since the others are very similar.
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We subtract the last row from all others, and expand along the n-th column:

A—An
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We obtain similar expressions for the other P()\j), for Ay > Ay > ... > )\, and conclude
that sign(P();)) = (—1)"7J, hence P(z) has a root between each two consecutive eigen-
values of C (these are n — 1 of the n-th roots of P). Moreover, since P(\1) = (—1)" and
lim, . P(z) = (—1)"00, then the n-th and largest root of P is between A; and oc.

We have therefore obtained more than our desired conclusion: P(x) has n positive, distinct
roots, hence the matrix EC has n distinct positive real eigenvalues. In particular, it has a
unique maximal eigenvalue. This concludes the proof.



