
Appendix 1 – Stability

We calculate the Jacobian matrix Dfw, for a fixed vector w:

Lemma 0.1. Dfw = I + γ
[
C − 2w(Cw)T − (wTCw)I

]
Proof. Call g(w) = (wTCw)w , so f(w) = w + γ(Cw − g(w))

gi(w) = (wTCw)wi

If i �= j:
∂gi

∂wj
(w) =

∂

∂wj
(
∑
k,l

Cklwkwl)wi = 2(
∑

k

Ckjwk)wi = 2[Cw]jwi

If i = j:

∂gi

∂wi
(w) =

∂

∂wi
(
∑
k,l

Cklwkwl)wi +
∑
k,l

Cklwkwl = 2(
∑

k

Ckiwk)wi+

+wTCw = 2[Cw]iwi + wTCw

So:
Dgw = 2w(Cw)T + (wTCw)I

�

Take now an orthonormal basis B of eigenvectors of C ( with respect to the Euclidean
norm ‖ · ‖ on R

n). Fix a vector w ∈ B. Pick any v ∈ B,v �= w. Call λw and λv their
corresponding eigenvalues.

Dfw(v) = v + γ[Cv − 2w(Cw)Tv − (wTCw)v] =
= v + γ[Cv − 2wwTCv − (wT Cw)w] =
= v + γ[λvv − 2wwT λvv − λww] = (1 − γ[λw − λv])v

Dfw(w) = w + γ[Cw − 2w(Cw)Tw − (wT Cw)] =
= w + γ[λww − 2wwT λww − λww] =
= w + γ[−2λw‖w‖w] = [1 − 2γλw]w

So B is also a basis of eigenvectors for Dfw.

Our next goal is to generalize this argument for an iteration function that includes
errors. The new model introduces an error matrix, E ∈ Mn(R) that has positive entries, is
symmetric and equal to the identity matrix I ∈ Mn(R) in case the error is zero. Moreover,
we assume that EC has strictly positive maximal eigenvalue of multiplicity one.

fE(w) = w + γ[ECw − (wT Cw)w]

Note that the symmetric, positive definite matrix C ∈ Mn(R) defines a dot product in
R

n as:
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〈v,w〉C = vT Cw

If v and w are eigenvectors of EC corresponding to the eigenvalues λv �= λw, then they are
orthogonal with respect to the dot product 〈, 〉C. Indeed:

ECv = λvv ⇒ 〈w,ECv〉C = λv〈w,v〉C

ECw = λww ⇒ 〈v,ECw〉C = λw〈v,w〉C

Hence λv〈v,w〉C = λw〈v,w〉C. As λv �= λw, it follows that 〈v,w〉C = 0, hence v and w
are orthogonal with respect to the given dot product.

A fixed point for fE is a vector w = (w1...wn)T such that ECw = (wT Cw)w. In
other words, w is fixed by fE if and only if it is an eigenvector of EC (with corresponding
eigenvalue λw), normalized such that ‖ w ‖C= λw. Clearly, this is possible if and only if
λw > 0.

ECw = λww, ‖w‖C = λw

If the multiplicity of λw is one, then w is orthogonal in 〈, 〉C to all other eigenvectors of EC.

Recall that

DfE
w = I + γ[EC − 2w(Cw)T − (wTCw)I]

Take w to be a fixed point of fE. w will hence be an eigenvector of EC, with eigenvalue
λw = (wT Cw)w > 0. Calculate:

DfE
ww = w + γ[ECw − 2w(Cw)T w − (wTCw)w] =

= w + γ[−2wwTCw] = [1 − 2γλw]w

DfE
wv = v + γ[ECv − 2wwTCv − λwv] =

= v + γ[(λv − λw)v − 2〈w,v〉Cw] = (1 − γ[λw − λv])v

for any other eigenvector v of EC with eigenvalue λv �= λw:

As in the error free case, DfE
w has all eigenvalues less than one in absolute value if and

only if λw is the principal eigenvalue of EC and γ < 1
λw

.

To complete our mathematical discussion, we argue that the condition on EC to have
a unique maximal eigenvalue (i.e. a principal eigenspace of dimension one) is not unrealis-
tically strict, and that EC has this property generically often. We will prove a somewhat
stronger result. We start by assuming, without loss of genericity, that C has distinct eigen-
values λ1 > λ2 > ... > λn > 0. We will show that, via some assumptions which are also
generically true, EC has also distinct eigenvalues.

E =

⎛
⎜⎜⎝

Q ε · ε
ε Q · ·
· · · ·
ε · ε Q

⎞
⎟⎟⎠ = (Q − ε)I + [ε] = (1 − nε)I + [ε]
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where [ε] is the n × n matrix with all entries ε. We take 0 ≤ ε < 1/n (i.e., positive error ε
smaller than the trivial value). We want to see what conditions need to be met in order to
have a unique maximal eigenvalue for the modified covariance matrix EC.

Since C is symmetric and positive semidefinite, there exists an orthogonal matrix P
(i.e., PPT = PT P = I), so that PCPT = D, where D is a diagonal matrix. Without
loosing genericity, we can assume that P is such that the sum of the entries along each of
its rows is nonzero.

Under there assumptions, we can proceed to calculate the eigenvalues of PECPT , since
these will be the same as the eigenvalues of EC. (Indeed, if v is an eigenvector of with
eigenvalue μ, then PTv is an eigenvector of EC, and conversely.) To do this, we first
simplify the form of PECPT , then calculate its characteristic polynomial:

PECPT = PEPTPCPT =
(
(1 − nε)I + P[ε]PT

)
D

For each j = 1, n, we call rj = Σn
k=1pkj the sum of the entries on the j-th row of P. With

this notation:

PECPT =

⎡
⎢⎢⎣(1 − nε)I + ε

⎛
⎜⎜⎝

r2
1 r1r2 · r1rn

r2r1 r2
2 · ·

· · · ·
rnr1 · · r2

n

⎞
⎟⎟⎠

⎤
⎥⎥⎦

⎛
⎜⎜⎝

λ1 0 · 0
0 λ2 · 0
· · · ·
0 · 0 λn

⎞
⎟⎟⎠

= (1 − nε)

⎛
⎜⎜⎝

λ1(ar2
1 + 1) λ2ar1r2 · λnar1rn

λ1ar2r1 λ2(ar2
2 + 1) · ·

· · · ·
λ1arnr1 · · λn(ar2

n + 1)

⎞
⎟⎟⎠

where a =
ε

1 − nε
, for 0 < ε < 1/n.

The eigenvalues of PECPT (which are also the eigenvalues of EC are proportional to the

roots of the polynomial P (x) = det
(

1
1 − nε

PECPT − xI
)

:

P (x) =

∣∣∣∣∣∣∣∣

λ1(ar2
1 + 1) − x λ2ar1r2 · λnar1rn

λ1ar2r1 λ2(ar2
2 + 1) − x · ·

· · · ·
λ1arnr1 · · λn(ar2

n + 1) − x

∣∣∣∣∣∣∣∣

= anλ1λ2...λnr2
1r

2
2...r

2
n

∣∣∣∣∣∣∣∣∣

1 + λ1−x
aλ1r2

1
1 · 1

1 1 + λ2−x
aλ2r2

2
· ·

· · · ·
1 · · 1 + λn−x

aλnr2
n

∣∣∣∣∣∣∣∣∣
We want to calculate P (λj), for all the distinct eigenvalues λj of C. We describe the
computation for λn, since the others are very similar.

P (λn) = anλ1λ2...λnr2
1r

2
2...r

2
n

∣∣∣∣∣∣∣∣∣

1 + λ1−λn

aλ1r2
1

1 · 1

1 1 + λ2−λn

aλ2r2
2

· ·
· · · ·
1 · · 1

∣∣∣∣∣∣∣∣∣
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We subtract the last row from all others, and expand along the n-th column:

P (λn) = anλ1λ2...λnr2
1r

2
2...r

2
n

∣∣∣∣∣∣∣∣∣

λ1−λn

aλ1r2
1

0 · 0

0 λ2−λn

aλ2r2
2

· ·
· · · ·
1 · · 1

∣∣∣∣∣∣∣∣∣
= anλ1λ2...λnr2

1r
2
2...r

2
n(−1)2n · λ1 − λn

aλ1r2
1

· λ2 − λn

aλ2r2
2

...
λn−1 − λn

aλn−1r2
n−1

= aλnr2
n(λ1 − λn)(λ2 − λn)...(λn−1 − λn) > 0

We obtain similar expressions for the other P (λj), for λ1 > λ2 > ... > λn and conclude
that sign(P (λj)) = (−1)n−j , hence P (x) has a root between each two consecutive eigen-
values of C (these are n − 1 of the n-th roots of P ). Moreover, since P (λ1) = (−1)n and
limx→∞ P (x) = (−1)n∞, then the n-th and largest root of P is between λ1 and ∞.
We have therefore obtained more than our desired conclusion: P (x) has n positive, distinct
roots, hence the matrix EC has n distinct positive real eigenvalues. In particular, it has a
unique maximal eigenvalue. This concludes the proof.
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